


Lecture Notes in Computer Science 4902

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany



Paul Hudak David S. Warren (Eds.)

Practical Aspects
of Declarative
Languages

10th International Symposium, PADL 2008

San Francisco, CA, USA, January 7-8, 2008

Proceedings

13



Volume Editors

Paul Hudak
Yale University, Department of Computer Science
P.O. Box 208285, New Haven, CT 06520-8285, USA
E-mail: hudak@yale.edu

David S. Warren
Stony Brook University, Department of Computer Science
Stony Brook, NY 11794, USA
E-mail: warren@cs.sunysb.edu

Library of Congress Control Number: 2007941814

CR Subject Classification (1998): D.3, D.1, F.3, D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-77441-6 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-77441-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12209545 06/3180 5 4 3 2 1 0



Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practioners to present original work
emphasizing novel applications and implementation techniques for all forms
of declarative concepts, including functions, relations, logic, and constraints.
Declarative languages build on sound theoretical foundations to provide attrac-
tive frameworks for application development. Existing languages have been suc-
cessfully applied to a wide array of real-world situations, and new developments
in theory and implementation have opened up new application areas. Conversely,
applications have driven progress in the theory and implementation of declara-
tive systems, as well as benefited from this progress.

The 10th PADL Symposium was held in San Francisco, California during
January 7–8, 2008, and was co-located with the ACM Symposium on Princi-
ples of Programming Languages (POPL). From 44 submitted papers, the PADL
Program Committee selected 20 for presentation at the symposium, based upon
at least three reviews for each paper provided from PC members and addi-
tional referees. Two invited talks were also presented at the conference: one by
John Launchbury entitled “Industrial Functional Programming” and the other
by Walter Wilson entitled “Large-Scale Logic Servers in Business and Govern-
ment.”

Following what has become a tradition at PADL symposia, the PADL Pro-
gram Committee selected one paper to receive the “Most Practical Paper” award.
This year the paper judged best in terms of practicality, originality, and clar-
ity was: “Certified Development Tools Implementation in Objective Caml,” by
Bruno Pagano, Olivier Andrieu, Benjamin Canou, Emmanuel Chailloux, Jean-
Louis Colaco, Thomas Moniot, and Philippe Wang. Congratulations to these
authors for this award.

We wish to thank the Program Committee for its expertise and hard work
in selecting papers and invited talks, and General Chair Hai-Feng Guo for his
excellent organizational and administrative efforts. Special thanks also to Gopal
Gupta for his guidance and advice. We also wish to acknowledge the authors of
the EasyChair on-line paper management software, which greatly facilitated the
PC’s efforts.

The 10th PADL Symposium was sponsored in part by COMPULOG Amer-
icas, and was organized in coordination with the Association for Computing
Machinery. Thanks are also due to the University of Nebraska at Omaha for its
support. Finally, we wish to thank the authors who submitted papers to PADL
2008 and all who participated in the conference.

November 2007 Paul Hudak
David Warren
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Industrial Functional Programming

John Launchbury

Galois Inc.
12725 SW Millikan Way, Suite 290

Beaverton, OR 97005
john@galois.com

Abstract. Functional languages have been the backbone of Galois’ busi-
ness for the past eight years. They have been very good for us, but not
without their own share of challenges. In this talk, we shall stand back
and examine the practicalities of using declarative methods over a range
of projects and products, to see what works well in practice, and con-
versely where we have found the tools to fall short.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Certified Development Tools Implementation in

Objective Caml

Bruno Pagano1, Olivier Andrieu1, Benjamin Canou2,3, Emmanuel Chailloux3,
Jean-Louis Colaço4,�, Thomas Moniot1, and Philippe Wang3

1 Esterel Technologies, 8, rue Blaise Pascal, 78890 Elancourt, France
{Bruno.Pagano,Olivier.Andrieu,Thomas.Moniot}@esterel-technologies.com
2 ENS Cachan, antenne de Bretagne Campus Ker Lann, F-35170 Bruz, France

Benjamin.Canou@eleves.bretagne.ens-cachan.fr
3 Laboratoire d’informatique de Paris 6 (LIP6 - UMR 7606),

Université Pierre et Marie Curie, Paris 6,
104, avenue du Président Kennedy, 75016 Paris, France

{Emmanuel.Chailloux,Philippe.Wang}@lip6.fr
4 Siemens VDO Automotive, 1, avenue Paul Ourliac, BP 1149, 31036 Toulouse,

France
Jean-Louis.Colaco@siemens.com

Abstract. This paper presents our feedback from the study on the use
of Objective Caml for safety-critical software development tools imple-
mentation. As a result, Objective Caml is now used for the new ScadeTM

certified embedded-code generator. The requirements for tools imple-
mentation are less strict than those for the embedded code itself. How-
ever, they are still quite demanding and linked to imperative languages
properties, which are usually used for this kind of development. The
use of Objective Caml is outstanding: firstly for its high level features
(functional language of higher order, parametric polymorphism, pattern
matching), secondly for its low level mechanisms needed by the run-
time system (GC, exceptions). In order to develop the tools to check the
safety-critical software development rules, it is necessary to reinterpret
them for this language, and then to adapt Objective Caml so that it
satisfies them. Thus, we propose a language restriction and a simplified
runtime library in order that we can define and measure the coverage of
a program written in Objective Caml according to the MC/DC criteria.
Then we can look forward to seeing this kind of languages spread out the
industrial environment, while raising the abstraction level in the concep-
tion and implementation of tools for certified programs production.

Keywords: Code coverage, Tests measurement, Functional program-
ming, Objective Caml, Civil avionics.

1 Introduction

Safety-critical softwares are traditionally associated to embedded control systems
but some other areas need them. Standards for software development have been
� This work started while the author was at Esterel-Technologies.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 2–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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defined with levels determined from the safety assessment process and hazard
analysis by examining the effects, on the final users, of a failure condition in the
system. Among the most common applications, we hold up as examples flight
commands, railway traffic lights, the control system of a nuclear power plant,
but also medical equipment or a car ABS1. They share the particularity that
their dysfunctions can cause catastrophes with lethal consequences for those in
relation with such a system.

The civil avionics authorities defined a couple of decades ago the certification
requirements for aircraft embedded code. The DO-178B standard [17] defines
all the constraints ruling the aircraft software development. This procedure is
included in the global certification process of an aircraft, and declines now for
other industrial sectors concerned by critical software (FDA Class III for medical
industry, IEC 61508 for car industry, etc).

The DO-178B standard imposes a very precise development process, which
preponderant activity is independent verification of each development step. In
this paper, we focus on software development and mistakes hunting procedures,
whereas DO-178B’s scope goes further. Code development as it is recognised by
certification authorities follows the traditional V-Model dear to the software en-
gineering industry. Constraints are reinforced but the principles stay the same:
the product specifications are written by successive refinements, from high level
requirements to design and then implementation. Each step owns an independent
verification activity, which must provide a complete traceability of the require-
ments appearing in this step.

The followed process to realize embedded code satisfying such a certification
requires the definition of a “coding standard”. This standard must define a set
of strict rules for the specifications’ definition, for the implementation and for
the traceability between specifications and realizations. In particular, the coding
standard must put forward the obligation to cover the entire code. The DO-
178B certification imposes this coverage to be done according to the MC/DC [10]
measure (Modified Condition/Decision Coverage).

The DO-178B standard applies to embedded code development tools with the
same criteria as the code itself. This means that the tool development must follow
its own coding standard. The certification standard originally targeted only em-
bedded software, so its application for a development tool must be adapted. For
instance, for a code generator it is accepted to use dynamic allocation and have
recursive functions. The specificity of the certification process for tools is under
discussion to be explicitly addressed by the forthcoming DO-178C standard that
will be effective in a few years.

In this context, tools development in a particular language must comply with
DO-178B constraints, which means having an MC/DC coverage of the program’s
source. Likewise, the runtime library, if there is one, must be certified. For the C
language, this translates to the control of libc calls and compiler mechanisms
verification. For more modern languages, such as Java, it would demand the
certification of the whole library.

1 Anti-lock Braking System.
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Objective Caml (OCaml) is particularly suitable for compiler conception and
formal analysis tools. As well as itself [13], it is used in Lucid Synchrone [15], the
à la Lustre language for reactive systems implementation, or the Coq [16] proof
assistant implementation. Even ten years ago, the use of the OCaml language
in software engineering for safe real-time programs development interested some
major avionics industries (Dassault). The experience of Surlog with AGFL shows
that OCaml can be integrated in a critical software development process and that
it brings in its well-founded model. With Astrée [8], OCaml proves its adequacy
for critical software tools realization.

The Esterel-Technologies company markets Scade [2,4], a model-based devel-
opment environment dedicated to safety-critical embedded software. The code
generator of this suite that translates models into embedded C code is DO-178B
compliant and allows to shorten the certification process of avionics projects
which make use of it. The first release of the compiler was implemented in C
and was available in 1999 (version 3.1 to 5.1 were based on this technology), but
since 2001, Esterel-Technologies has prepared its next generation code generator
based on a prototype written in OCaml. This work allowed to test new compil-
ing techniques [7] and language extensions [6]. It has now appeared that OCaml
allowed to reduce the distance between the specifications and the implementa-
tion of the tool, to have a better traceability between a formal description of the
input language and its compiler implementation.

In a more classical industrial environment, where C or Ada languages dom-
inate, and where development processes use intensive tests, the introduction
of OCaml changes the formulations of qualification problematics. Many of its
language features surprise control theory engineers or imperative languages pro-
grammers, first because OCaml is an expression language, but also because it
provides higher level features such as parametric polymorphism, pattern match-
ing, exception handling and automatic memory management [11] (Garbage Col-
lector or GC).

Conversely, code coverage and conditions/decisions notions are defined and
well understood for imperative languages like the C language. So we need to
adapt this notion to OCaml Boolean expressions. Functional programming and
parametric polymorphism are the main concerns in this evolution of MC/DC
code coverage specification. It is also necessary to adapt the runtime library to
fit the coding standards, and advisable to bring control points between specifica-
tions and runtime library for the control (general apply mechanism, exceptions
handling) and for automatic memory management. This makes the use of the
Inria original language runtime library difficult and militates for the building of
an alternate compatible runtime library.

The rest of this paper is organized as follows. Section 2 exposes the valida-
tion process in an industrial context. Section 3 explains the adaptation of code
coverage for OCaml programs and describes our implementation called mlcov.
Section 4 shows how to certify OCaml programs and then details how the run-
time library must be modified. Section 5 compares different approaches to use
OCaml and presents our future work.
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2 Code Verification in a Certified Context

The American federal aviation administration (FAA) requires any computer pro-
gram embedded in an aircraft to respect the DO-178B standard to allow it to
fly. Several levels of criticity are defined (A, B, C, etc.) and applied according to
the impact of a software bug on the whole system and passengers. For instance
comfort application like entertainment or air-conditioning are less critical than
flying command system.

The DO-178B is highly rigorous about the development process but does not
give any constraint, neither on the programming language to use nor even about
the paradigms it has to implement. However rules exist to precise this standard
and drastically restrain the type of accepted programs. At level A, which applies
to the most critical programs, an embedded program cannot dynamically allocate
memory, use recursive function and generally speaking has to work in bounded
time and space with known bounds. For this kind of development, using OCaml
or any other high level language is not an option. Usually, only assembly language
and limited subsets of C and Ada are used.

Nevertheless, it is allowed, and becoming more and more necessary, to use
code generators and/or verifiers to help writing these programs, if these tools
are themselves certified at the same level of the standard. For example, the code
coverage measurement, about which we will speak later, can be done by human
code reviewers or by a software if it is itself certified at the appropriate level.
This level is a bit relaxed for verification tools as they cannot directly affect the
embedded application.

When it comes to tools development, some of the most constraining rules can
consensually be broken, given that the fundamental demands are fulfilled. For
example, if recursion or dynamic memory allocation are allowed, it must be re-
strained to memory configurations where the stack and the heap are large enough
not to interfere with the ongoing computation. Even if, unlike an embedded soft-
ware, a tool can fail, it must provably never give a false result. Therefore, the veri-
fication activities take a preponderant amount of time in the development process.

Tests: coverage measurement criteria: During an industrial process, the code
verification stage takes place after the development and is meant to show that
the product matches its specifications. Testing software requires a stoping cri-
teria to state that the behavior of the program is reasonably explored as it is
well known that exhaustivness is unreachable. Coverage measurement is the tra-
ditional answer from the software engineering community to define the good
compromise between loose verification and theoretical limits. On this particular
point, the DO-178B standard has a very precise requirement by demanding a
complete exploration of the code structure in the MC/DC sense. The DO-178B
defines several verification activities and among these a test suite has to be con-
stituted to cover up the set of specifications of the software to verify and thus
its implementation. The standard requires each part of the code to be used in
the execution of at least one test and conform to its specifications.

The structural coverage criteria can be separated into the data flow ones and
the control flow ones. The data flow analysis measures the relation between the
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assignments and uses of variables. The DO-178B only defines criteria over the
control flow. The control flow is measured on executed instructions, Boolean
expressions evaluated and branches of control instruction executed. We will now
present the main measurements.

– Statement Coverage: It is the simplest criterion, to understand as well as to
apply. It consists in verifying that each instruction of the tested program is
executed by at least one test. Such a criterion is considered fragile as shown
in the next example.

– Decision Coverage: A decision is the Boolean expression evaluated in a test
instruction to determine the branch to be executed. This coverage requires
each decision to be evaluated to the two possible values during the tests,
ensuring that all code branches are taken.

The following C code example, defining the absolute function over inte-
gers, exposes the difference between these two criteria:

int abs(int x) {int y; if (x<0) y = -x; return y;}

A unique test with a negative value for x is sufficient to cover all the instruc-
tions, however the decision coverage needs a second one with a positive value.
This little code is sufficient to prove that decision coverage can detect more
incorrect programs, since with a positive value, a random value is returned
by the function instead of the identity whereas such a test is not needed by
the statement coverage.

– Condition Coverage: A condition is an atomic subexpression of a decision.
For example, the decision x && (y<0) || f(z) contains the three conditions
x, y<0 and f(z). A condition is covered if tests exist in which it is evaluated
to true and false.

– Condition/Decision Coverage: The C/DC is the combination of the two
previous criteria.

– Modified Condition/Decision Coverage: The MC/DC extends the C/DC
criterion by requiring each condition to independently modify the decision
value. In other words, for each condition c, two tests have to exist which
must change the decision value while keeping the same valuations for all
conditions but c.

– Multiple Condition Coverage: For this criterion, the tests must generate
every Boolean combinations of the conditions of each decision.

Let us now illustrate these definitions by showing the tests required by each
of the criteria for the test instruction if ((a || b ) && c) { ... }. Eight
tests exist for this instruction which are the different valuations of the Boolean
variables a, b and c. We shall name these valuations test vectors and use the
notations [TTT T], [FTT T], [TFT T], [FFT F], [TTF F], [FTT F], [TFT F]
and [FFF F]. They correspond to the truth table of the expression.

The required tests vary according to the coverage criterion:

– Statement Coverage: a unique test giving the value T to the condition is
necessary
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– Decision Coverage: Two tests are necessary, one of them giving T and the
other F, for example [TTT T] et [FTT F].

– Condition Coverage: Each condition has to take the two values, therefore
two tests which give different valuations to every condition are sufficient, for
example [TTF F] et [FFT F] (note that this example does not satisfy the
decision coverage criterion).

– C/DC: As in the previous case, we must provide two tests which give different
valuations to every condition but now they must give a different value to the
decision too, for example [TTT T] et [FFF F].

– MC/DC: For each condition, we must exhibit two tests in which only this
condition and the decision result differ. For example, the two test vectors
[TFT T] and [FFT F] show the independence of the condition a. The test
vectors may be used to show the independence of more than one condition.
Usually, N+1 test vectors are necessary for a decision with N conditions. For
this example, the four test vectors [TFT T], [FTT T], [TFF F] and [FFT F]
are sufficient.

– Multiple Condition Coverage : By definition, the eight vectors of the truth
table detailed before has to be be provided.

The DO-178B level A certification requires the whole program code to have a
100% MC/DC measurement. The MC/DC criterion turned out to be a reason-
able compromise between a too weak requirement of two tests and an unreachable
one of 2n tests.

The relevance of the MC/DC criterion has been profusely discussed [9,12]. Our
aim is to show the meaning of this measurement in OCaml since it is required
by the civil avionics agencies. An important point to understand is that the
MC/DC analysis of the code is one element of the validation process of every
development step. Therefore, even if it is possible to work around the coverage
analyses by coding tricks in theory, these tricks will be rejected by the persons in
charge of reviewing the code or validating the MC/DC measurement in practice.

3 Code Coverage of OCaml Programs

According to Chilenski et al. [10], code coverage is not a test technique: it should
be considered as a measure describing the degree to which the source code of a
program has been exercised. In this section, we give a definition of the MC/DC
criteria from the viewpoint of OCaml programs. We restrict to the functional
and imperative features of OCaml, which correspond to the subset allowed by
the coding rules of the Scade to C compiler. This subset remains quite large (cf.
paragraph 3.3), for instance, it is sufficient to compile the standard library of
the OCaml distribution.

3.1 Coverage of Expressions

We need to adapt the definition of code coverage to a functional language like
OCaml. With respect to imperative languages, the notion of coverage is related
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to the statements of a program. Since OCaml is an expression language, we will
be interested in the coverage of the expressions evaluation.

In the imperative paradigm, coverage shall pinpoint that every execution
branch in the program has independently been exercised. The same is encoun-
tered in the OCaml language, since some sub-expressions (in the case of the
conditional expression, for instance) may remain unevaluated.

i f (x<y ) {
min = f (x ) ;

} else {
min = f (y ) ;

}

l e t min =
i f x<y

then f x
else f y

As well as the coverage of the C pro-
gram shows which branch of the if con-
trol structure has been executed, cov-
erage of the OCaml program examines
which sub-expression of the if operator
has been evaluated.

Coverage is measured by instrumenting the source code of the program. With
respect to OCaml, we state that an expression has been covered as soon as
its evaluation has ended. The main idea of the instrumentation algorithm is to
replace each expression expr with (let aux = expr in mark(); aux), where
the variable aux is not free in expr and mark() is a side-effect allowing to record
that this point of the program has been reached.

Some constructions of the OCaml language (such as if then else) may in-
troduce several execution branches. Coverage of expressions entails to trace the
evaluation of each one of the branches independently. In order to avoid over-
marking, we split the instrumentation algorithm into two mutually recursive
translation functions F and G. Both F and G instrument the execution branches
of the program, but only F marks the end of evaluation of expressions. Here is
the definition of the instrumentation functions, together with some explanation
of the interesting cases:

F(k) = mark(); k if k is a constant or a constant constructor

Since we (statically) know that the evaluation of a constant value or constructor
never fails, we can simplify the translation and write F(k) = mark(); k.

F(id) =
{
fun x → mark(); id x if id has a functional type
mark(); id otherwise

Note that F η-expands every top-level functional value (F(id) = fun x →
mark(); id x) so that the algorithm is still type-preserving. Otherwise, it would
produce weak type variables.

F(f x) =

⎧⎨
⎩
mark(); G(f) G(x) if f does not return
G(f) G(x); mark() if f x has type unit
let aux = G(f) G(x) in mark(); aux otherwise

A heuristics is implemented in order not to trace the end of evaluation of a
family of functions that do not return, such as failwith and exit: we look
for functions with type ∀α.τ → α , where the polymorphic type variable α
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does not appear in τ . Indeed, the application of any of those functions does
not terminate, which implies that structural coverage would never be reached if
they were instrumented in the usual way. Instead of the normal case, we write
F(f x) = mark(); G(f) G(x). Unfortunately, this heuristics suffers from both
false positives and false negatives, since it may be fooled by type annotations.

As a shortcut, we define F(f x) = G(f) G(x); mark() when the type of f x
is unit, since the type of mark() is unit too.

F(fun x → e) = fun x → F(e)
F(e1; e2) = G(e1); F(e2)

F(if e1 then e2 [else e3]) = if G(e1) then F(e2) [else F(e3)]
F(while e1 do e2 done) = while G(e1) do F(e2) done; mark()

F(let x = e1 in e2) = let x = G(e1) in F(e2)
F(match e1 with pi [when e2] → ei) = matchG(e1)with pi

[whenG(e2) → F(ei)]
F(try e with pi → ei) = try F(e) with pi → F(ei)

F((e1, e2)) = mark(); (G(e1), G(e2))
F(C(e)) = mark(); C(G(e))

G(x) = x if x is a constant value or an identifier
G(f x) = G(f) G(x)

G(fun x → e) = fun x → F(e)
G(e1; e2) = G(e1); G(e2)

G(if e1 then e2 [else e3]) = if G(e1) then F(e2) [else F(e3)]
G(while e1 do e2 done) = while G(e1) do F(e2) done

G(let x = e1 in e2) = let x = G(e1) in G(e2)
G(match e1 with pi [when e2] → ei) = match G(e1) with e1

[whenG(e2)] → F(ei)
G(try e with pi → ei) = try G(e) with pi → F(ei)

G((e1, e2)) = (G(e1), G(e2))
G(C(e)) = C(G(e))

Correction of the instrumentation. Since mark() has type unit (computes by
side-effect), the translations defined by functions F and G do not alter the types
of the expressions being instrumented. Furthermore, they do not alter the value
computed by this expression.

A program is structurally covered when every call to mark() in the instru-
mented source code has been reached.

Tail recursion: Tail recursion is not a feature of OCaml or of functional lan-
guages. It is a property of a function, in which the last operation is a recursive
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call. Such recursions can be easily transformed into iterations: this is known
as the tail call optimization. Replacing recursion with iteration can drastically
decrease the amount of stack space used and improve efficiency.

Our instrumentation algorithm, consisting in adding a side-effect after each
expression, systematically breaks tail calls, thus forbidding the optimization
mentioned above. In pratice (with the Scade compiler typically), we were not
confronted with cases in which the instrumentation of the program led to a
stack overflow.

3.2 MC/DC Coverage

According to the DO-178B standard, MC/DC is fulfilled when every point of
entry and exit in the program has been invoked at least once, every condition in
a decision has taken on all possible outcomes at least once, and each condition
has been shown to affect that decision’s outcome independently.

With respect to the OCaml language, we chose to define an MC/DC deci-
sion for each expression of type bool (except the Boolean constants true and
false). Then, MC/DC conditions are determined by syntactically looking for
the Boolean operators not, && and ||. We propose to transform every Boolean
expression into a bunch of nested if then else. Here is the translation scheme:

Fb(not e, l, r) = Fb(e, r, l)
Fb(e1 && e2, l, r) = Fb(e1, Fb(e2, l, r), r)
Fb(e1 || e2, l, r) = Fb(e1, l, Fb(e2, l, r))

Fb(if e1 then e2 else e3, l, r) = Fb(e1, Fb(e2, l, r), Fb(e3, l, r))

Fb(e, l, r) = if set_condition(); e then l else r otherwise

Thence, the MC/DC instrumentation M of a Boolean expression e can be
defined straightforwardly:

M(e) = Fb(e, set_outcome(); true, set_outcome(); false)

where set_condition() and set_outcome() are side-effects (of type unit) al-
lowing to update respectively the value of the current condition and the value
of the decision’s outcome.

Example. The following Boolean expression is composed of four independent
conditions. Here they are single variables, but could also be replaced with more
complex expressions.

l e t pred a b c d = ( a | | b) && ( c | | d)

There are 24 possible tests. Coverage of expressions requires 2 tests, whereas
MC/DC needs 5. The Fb translation reveals 7 calls to set_outcome() ; , thus
the 24 test cases fall into 7 classes according to the way they affect our counters.
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l e t pred a b c d = (∗ a b c d −> p ∗)
i f a then

i f c then true (∗ 1 : T T −> T ∗)
else i f d then true (∗ 2 : T F T −> T ∗)
else fa l se (∗ 3 : T F F −> F ∗)

else i f b then
i f c then true (∗ 4 : F T T −> T ∗)
else i f d then true (∗ 5 : F T F T −> T ∗)
else fa l se (∗ 6 : F T F F −> F ∗)

else fa l se (∗ 7 : F F −> F ∗)

Let us find, for each condition, which test pairs are sufficient to prove that
the decision’s outcome is independently affected:

a : (1)+(7) b : (4)+(7) c : (1)+(3) or (4)+(6) d : (2)+(3) or (5)+(6)

which leads us to the following minimal sets:

{(1), (2), (3), (4), (7)} or {(1), (4), (5), (6), (7)}
As a consequence, full MC/DC coverage can be achieved with 5 tests, which
confirms the theoretical result. Mind that our translation is only required to
measure MC/DC coverage, it isn’t a method to derive a minimal set of test
cases from the source code: hence the discrepancy between the 5 tests required
for full MC/DC coverage and the 7 possible tests. In other words, it is not
necessary to cover the translated version of the decision in its entirety to fulfill
the MC/DC criterion.

3.3 Implementation

We developed a tool capable of measuring the MC/DC rate of OCaml programs.
The tool first allows to create an instrumented version of the source code, to-
gether with a trace file. Then, the user has to build the instrumented code with
the Inria OCaml compiler. Running the instrumented executable leads to (in-
crementally) updating the counters and structures of the trace file. Finally, the
coverage results are presented through HTML reports, that are generated from
the information collected in the trace file.

Our tool is built on top of the front-end of the INRIA OCaml compiler. A
first pass is always done, prior to the instrumentation stage, in order to reject
OCaml programs that do not comply with the coding rules related to the Scade
compiler. For instance, we do not support objects, polymorphic variants, labels
and optional arguments, nor the unconventional extensions (multi-threading,
support for laziness, recursive values and modules).

Performance Results. Performances are quite good with respect to programs
that contain a lot of pattern-matching and a few recursive calls. Thus, the Scade
to C compiler has been successfully instrumented and used to compile non trivial
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Scade programs. The instrumented version of Scade compiler runs almost as fast
as the original one.

Scade compiler instrumented Scade compiler
number of lines 30 000 53 500
execution time on a large
Scade model (8 120 lines)

27.6 s 28.1 s

On the contrary, performances are very degraded with OCaml programs that
use recursion intensively, such as a naive implementation of fibonacci. Indeed,
in those cases, counters can be hit several millions (even billions) of times,
whereas in the case of Scade they are updated a few hundreds or thousands
of times only.

The η-expansion of polymorphic variables can introduce a lack of performance
with a program that uses intensively the higher-order features of the language.
This lack has not been measured, but the cost of abusive closure constructions
is well known for any functional language developer.

The lack of performance is not a point to our purpose because the instru-
mented code is only used to measure the coverage of the code. So it will be used
in a large set of tests; but it is used on real application cases. Most of cases,
including the Scade compiler, the tests needed by the coverage of the source
code are small and the instrumented code performs quite well (less than 5%
of overcost). Furthermore, the code coverage analysis is a heavy process: tests
building, test validation, coverage results analysis, . . . In this context, the slight
lack of performance is not relevant.

4 Certification of OCaml Programs

The DO-178B certification of an application applies on the final executable. Thus
the analysis must be applied to the source code of the progam itself but also on
the library code used by the program. A typical OCaml program such as the
Scade compiler uses two kind of library code: the OCaml standard library which
is itself written in OCaml, and the runtime library, written in C and assembler;
both libraries are shipped with the OCaml compiler and are automatically linked
with the final executable.

The standard library contains the interfaces manipulating the datatypes pre-
defined by the OCaml compiler (integers, strings, etc.), the implementation of
some commonly used data structures (hash tables, sets, maps, etc.) and some
utilitary modules (command line parsing, printf-like formatting, etc.). The run-
time library contains:

– the implementation of some library functions that cannot be written in pure
OCaml because they need access to the in-memory representation of OCaml
values: the polymorphic comparison function, the polymorphic hashing func-
tion, the serialization/deserialization functions;
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– library functions that need to interact with the host OS, most notably the
I/O functions;

– low-level support code that is required for the execution of OCaml pro-
grams: memory management functionality, exceptions management, support
for some function calls, etc. Use of this code is not always traceable to the
original source in OCaml, it is often introduced by the OCaml compiler.

The difficulty of specifying and testing such low-level library code (as required
by the DO-178B process) lead us to adapt the runtime library so as to simplify it.

4.1 Modifications to the Runtime Library

The bulk of the modifications was to remove features unessential to our spe-
cific application, the Scade compiler. This is a program with a relatively simple
control flow and very little interaction with the OS: its inputs consist only of
command line arguments and text files, its outputs are also text files.

First, the concurrency support was removed from the runtime. OCaml pro-
grams can use POSIX signals and multi-threading but this feature is dispensable
when writing a compiler.

Similarly, the support for serialization and deserialization of OCaml values was
removed. Furthermore these functions are not type-safe and thus can compromise
the safety guarantees of the OCaml type system.

Most of the work consisted in simplifying the automatic memory manage-
ment subsytem. Indeed the garbage collector (GC) of OCaml is renowned for
its good performances; however it is a large and complex piece of code. It is a
generational GC with Stop&Copy collection for the young generation and incre-
mental Mark&Sweep collection for the older generation; it supports compaction,
weak pointers and finalization functions. We successfully replaced it by a plain
Stop&Copy collector, thus eliminating features unnecessary to our compiler such
as weak pointers and finalization. The collector is no longer incremental, which
implies that the execution of the program may be interrupted for a large amount
of time by the collector, however this is of no concern for a non-interactive ap-
plication such as a compiler.

Simplifying this part of the runtime library was difficult because of its tight
coupling with the OCaml compiler. Indeed, both this memory manager code and
the compiler must agree on the in-memory representation of OCaml values and
on the entry points of the memory manager. Furthermore, the OCaml compiler
inlines the allocation function of the memory manager for performance reasons.
All in all, we had little leeway in replacing this code: it practically had to be
Stop&Copy collector and we had to keep some of the symbol names. However
we were able to obtain complete coverage of this simplified GC, despite the fact
that it is difficult to test since most of the calls are not explicit in the original
OCaml source code.

The OCaml standard library is less problematic concerning certification. Most
of it is written in plain OCaml and certification of this library code is no more
difficult than that of the application code. Some of the more complex modules
such as the printf-like formatters were simply removed.
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The only notable modification of the standard library is the support of over-
flows in integer arithmetics. The built-in integers in OCaml implement a signed
31 bit (or 63-bit, depending on the platform) wrap-around arithmetic. To be
able to detect overflows, the basic arithmetic functions were replaced by wrap-
per function that check the result and raise an exception in case of overflow.

4.2 Performance Results

The modifications of the runtime library that can impact the program’s perfor-
mance are the new GC and the overflow-checking arithmetic operations; other
modifications are merely removal of unused code and do not alter performance.
Tests were done on the (non-instrumented) Scade compiler running with the
same large Scade model as in section 3.3.

To check the impact of overflow checks, we tested our modified runtime library
with and without overflow detection. No measurable difference could be seen.
This is expected as the Scade compiler does very few arithmetic computations.

To measure the performance of the GC, we measured the total running time
of the program and the top memory consumption; individual collection time was
not measured (as mentioned earlier, “pauses” in the execution due to the GC are
not a concern for a compiler). We found the Scade compiler to be approximately
30% slower than with the regular OCaml GC. The memory footprint reached
256 MB vs. 150 MB with the regular GC. This was expected: Stop&Copy GC
are not very memory-efficient: due to their design, no more than half the memory
used by the GC is available to store program data.

5 Discussion

5.1 Approaches

Our approach in this article is to focus directly on OCaml programs and on the
OCaml compiler from Inria. To ensure compatibility of this approach with the
Scade compiler, we have restricted the OCaml language to its functional and
imperative core language, including a basic module system. The runtime library
pointers, serialization . . . ) has also been simplified. One pending difficulty is to
explain compilation schemes for language features and their composition.

Another approach to certificate OCaml programs would be to use a compiler
from ML to C [19,5] and then to certify the generated C code by using tools for C
code coverage. Once again the main difficulty is to check the GC implementation
of the runtime library; GC with ambiguous roots using [3] or not [5] the C stack
may “statistically” fail the certification. The simple GC as Stop&Copy [11] are
not appropriate to the C language because they move their allocated values,
mainly GC regarding the C stack as roots set.

A third approach, which can be compatible with the first, is to use a byte-code
interpretor. Its strengh is to improve control to manage stack and exceptions.
Moreover, an interpretor gives the possibility to analyse the program coverage
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during execution and not only by its instrumentation. A Just in Time translator
can be added to improve performances [18]. A JIT transformation is easier to
explain and to describe during the certification process than an entire compiler,
mainly because its optimisations are less complex.

These three approaches allow the use of high level languages to develop tools
for embedded softwares. This will reduce the development life cycle and simplify
the certification process.

5.2 Future Work

The pattern matching is one of the most important features of the OCaml lan-
guage. It can be considered both as a control structure and as the only way to
build accessors to complex values. Moreover, the static analysis [14], used by the
OCaml compiler, ensure some good properties. In this paper, we consider that a
pattern matching instruction is covered by a single test for each pattern of the
filter. This is sufficient with respect to the definition of MC/DC requirements
which are only applicable on Boolean expressions. An extension of the cover-
age principles is to consider a pattern matching as multiple conditions and to
require to cover the independance between any of the condition. For instance,
the pattern x::y::l -> matches any list of at least two elements; intuitively, it
expresses two conditions: the list is not empty and the the tail of the list is not
empty too. A more precise coverage measure can ask to have two different tests
for this pattern.

The more modern features of OCaml [1] are not necessarily wished by the
certification organizations to design critical softwares. For instance the object
programming, à la C++, is not yet fully accepted by the DO-178B; and the
row polymorphism from the OCaml object extension may not satisfy all their
criteria. In the same way, polymorphic variants bring a concept of extensibility
that is not compatible with the critical software development, which requires
comprehensive specifications for all used data structures.

On the other hand, the genericity of functors (parametric modules) is valu-
able to build this kind of tools, but when a functor is applied, the same types
constraints than parametric polymorphism have to be checked These restrictions
are under study. A simple solution to properly cover parametric modules is to
consider independently any of its monomorphic instance. But this solution leads
to demand more tests than the necessary ones: when a part of a functor does
not use some arguments, it can share the same tests to ensure the coverage.

6 Conclusion

For the community of statically typed functional languages, usual arguments
on quality, safety and efficiency about code written in OCaml are well known
and accepted for a long time. Nevertheless, convincing the authorities of certifi-
cation requires to respect their measuring criteria of quality. This development
has shown that the concepts of MC/DC coverage could be used for a function-
al/imperative subset of OCaml and its simplified runtime. Although it is not
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applicable to embbed code written in OCaml, satisfying criteria from DO-178B
gives to OCaml the capabilities to specify and to implement tools for design of
critical softwares.

The Scade compiler of Esterel Technologies is such a tool, it has been certified
DO-178B level A by the American and the European civil aviation administra-
tions; it is used for instance by Airbus, Pratt and Whitney and many others. Pre-
viously implemented with the C language, the compiler of the version 6 of Scade
has been written in OCaml and will be submitted to the qualification procedures.
The code coverage analysis will be performed by the mlcov tool described in this
paper. Notice that mlcov needs to be DO-178B level C certified which is a neces-
sary condition to be used in a DO-178B level A cycle development.
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Abstract. An extended practice in the realm of Software Engineering
and programming in industry is the application of coding rules. Coding
rules are customarily used to constrain the use (or abuse) of certain pro-
gramming language constructions. However, these rules are usually writ-
ten using natural language, which is intrinsically ambiguous and which
may complicate their use and hinder their automatic enforcement. This
paper presents some early work aiming at defining a framework to for-
malise and check for coding rule conformance using logic programming.
We show how a certain class of rules – structural rules – can be refor-
mulated as logic programs, which provides both a framework for formal
specification and also for automatic conformance checking using a Prolog
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1 Introduction

Although there is a trend towards increased use of higher-level languages in the
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However, a good usage of a language like C involves using the language in a
disciplined manner, such that the hazards brought by its weaknesses and more
error-prone features are minimised. To that end, it is common to require that
code rely only on a well-defined subset of the language, following a set of coding
rules. For C, for example, MISRA-C [1], elaborated by The Motor Industry Soft-
ware Reliability Association (MISRA), is one of the leading initiatives, mainly
fostered by the British automotive industry but later applied to other realms.
MISRA-C contains a list of 141 coding rules aimed at writing robust C code for
critical systems. Examples of typical coding rules for C are “all automatic vari-
ables shall have been assigned a value before being used” and “functions shall not
call themselves, either directly or indirectly.” For C++ no equally accepted set of
coding rules exists, but a notable initiative is High-Integrity C++ (HICPP [2])
which provides around a hundred coding rules for C++.

Another use of coding rules is to enforce domain-specific language restrictions.
Java Card [3], for example, is a subset of Java for programming Smart Cards.
In such an environment memory is scarce, and coding rules typically forbid
language constructs that may lead to heavy memory usage. At the other end of
the spectrum, each organisation – or even project – can establish its own coding
rule sets.

However, no matter who devises and dictates the coding rule set, for it to be
of practical use, an automatic method to check code for conformance is needed.1

Added to the intrinsic difficulty of mechanically checking rules, they are typically
described using (necessarily ambiguous) natural language, which shifts the diffi-
culty of interpreting them to whoever implements the checking tool. Still there
exists a number of commercial quality assurance tools from vendors such as IAR
Systems (http://www.iar.com) and Parasoft (http://www.parasoft.com) that
claim to be able to check code for compliance with a subset of MISRA-C. Other
tools, for example Klocwork (http://www.klocwork.com), define their own list
of informally described checks aimed at avoiding hazards. But, in absence of a
formal definition of rules, it is difficult to be certain about what they are actu-
ally checking, and two different tools could very well disagree about the validity
of some particular piece of code with respect to, e.g., the same MISRA-C rule.

This paper presents a framework to precisely specify rule sets such as MISRA-
C and to, later, automatically check (non-trivial) software projects for confor-
mity. In the rule-coder side, a logic-based language will make it possible to easily
capture the meaning of coding rules; this language will be compiled into a Prolog
program with which code conformity is checked.

This work is developed within the scope of the Global GCC project (GGCC,
[4]), a consortium of European industrial corporations and research labs funded
under the Eureka/ITEA Programme. GGCC aims at extending the free GNU
Compiler Collection (GCC) with project-wide optimisation and compilation ca-
pabilities (Global GCC). In the context of GGCC, we seek the inclusion of a
facility to define new sets of coding rules, and providing mechanisms to check
code compliance using a logic programming engine and making heavy use of the

1 Although some rules may be undecidable, finally needing human intervention.
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static analysers and syntax tools already present in GCC. Such a mechanism for
extensibility is a requirement for many organisations of the GGCC Consortium
having their own coding policies or the necessity to adapt existing ones.

Since GCC is a multi-language compilation framework, it is natural to provide
support to express coding rules for different target languages. We have initially
focused on C, C++, and Java since they are widely used in industry, in particular
by the industrial partners of the GGCC project. Throughout the paper, however,
we will only consider C++ (and HICPP).

The rest of the paper is structured as follows: Section 2 contains a classifica-
tion of coding rules. Our framework for rule validation is presented in Sect. 3.
Section 4 explains how structural rules can be specified using logic programs,
first introducing some key examples and then focusing on those constructs that
occur in rules more often. Experimental results obtained with a small proto-
type are presented in Sect. 5. Section 6 comments on related work and Sect. 7
concludes.

2 A Classification of Coding Rules

In order to make an initial classification of coding rules, which is needed to have
an idea of the difficulty of the task and the type of code schemata we will have
to deal with, a survey was conducted within the project partners asking for
examples of coding rules internally followed in their organisations. This gave us
clues about which types of rules were actually perceived as interesting in order
to focus primarily on them. In parallel, We analysed in some detail MISRA-C
and HICPP, which resulted in a categorisation, shown below, of coding rules
which roughly ranks the difficulty of formalising them and of verifying they
are met:

Trivial. The existence in the source code of a simple pattern that can be ex-
pressed with a regular expression violates the rule. E.g.: “Do not call the
malloc() function” (MISRA-C, rule 20.4).

Syntactic. Slightly modifying the grammar (e.g., by eliminating productions)
or the lexical analysis, is enough to catch violations to the rule. E.g.: “Do
not use the ‘inline’ keyword for member functions” (HICPP, rule 3.1.7).

Type-enforceable. An extended type system is needed to deal with it. E.g.:
“Expressions that are effectively Boolean should not be used as operands to
operators other than &&, ||, and !” (MISRA-C, rule 12.6).

Structural. The rule has to do with permanent relations between objects in
the code. Information not present in the Abstract Syntax Tree (AST) but
completely static, such as the inheritance hierarchy, needs to be analysed.
E.g.: “If a virtual function in a base class is not overridden in any derived
class, then make it non virtual” (HICPP, rule 3.3.6).

Dynamic. The rule refers to sequences of events occurring at runtime. Control
flow graph information is typically taken into account, but many other things
might be necessary, as amemorymodel, pointer alias, or data-flow information.



Automatic Coding Rule Conformance Checking Using Logic Programming 21

E.g.: “All automatic variables shall have been assigned a value before being used”
(MISRA-C, rule 9.1). Due to their own nature, automatically checking these
rules poses, in general, a series of problems whose solution needs information
which can, at best, be approximated using static analysis.

Hard to automate. Either the rule is difficult to formalise or it involves non-
computable properties: for instance, whether two procedures compute the
same function or not. E.g.: “Behaviour should be implemented by only one
member function in a class” (HICPP, rule 3.1.9).

As it is clear that very different verification techniques are required to deal
with different classes of coding rules, we have decided to focus first on structural
rules, i.e., those that depend on static relations among objects in the code. On
one hand, these were perceived as interesting by industrial project partners and,
on the other side, a customary research on the literature threw the result that
these aspects of software construction had not been treated with the depth they
deserved. More than 20 rules of this kind have been detected in HICPP and
MISRA-C.

It is interesting to note that, with the exception of the last category, a signifi-
cant part of the information needed to deal with these rules are already gathered
by modern compilers, in particular by GCC. Needless to say, rules of a certain
category may require machinery characteristic of previous categories.

3 Rule Validation Framework

Our selection of basic framework components stems from the observation that,
in general, structural coding rules are not very complex (in a linguistic sense).
They do not need to deal with time, and they do not need to, e.g., model beliefs
or approximate reasoning, either. Therefore, first order logic increased with sorts
(as we will see later) seems a well-known and completely adequate formalism.

Detecting whether some software project violates a particular rule can be
made as follows:

1. Express the coding rule in a suitable logic, assuming an appropriate repre-
sentation of the entities the rule needs to know about. This is a one-time
step, independent from the particular software project to be checked.

2. Transcribe the necessary program information into the aforementioned rep-
resentation. This is necessary for every project instance.

3. Prove (automatically) whether there is a counterexample for the rule. In that
case the rule is not met; otherwise, the code conforms to the rule.

The framework that we propose for structural coding rule validation of C++
development projects is depicted in Fig. 1. On its left-hand side we see that struc-
tural coding rules are formulated in a domain-specific language termed CRISP2

which is compiled automatically into Prolog predicates for checking. CRISP is

2 CRISP is an acronym for “Coding Rules In Sugared Prolog”.
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Fig. 1. Coding rule validation workflow

an expressive first-order logic based specification formalism that extends Prolog
with sorts, full constructive negation and universal quantification. As some fea-
tures depend on the programming language being analysed, there is a family of
languages (CRISPL) parametrised by the actual programming language (L).

While, as we will see, Prolog can be used to express structural rules, making
it the native language for specifying coding rules has several drawbacks: people
writing or reading the rules are not likely to be Prolog experts, full Prolog
contains too much extra (perhaps non-declarative) stuff that does not fit in our
setting and which needs care regarding e.g. evaluation order and instantiation
state of variables, etc. Moreover, a proper compilation of rules into Prolog will
demand a careful use of several extensions to the language. The use of a domain-
specific language will therefore maximise declarativeness and will also allow the
CRISP compiler to focus on those constructions that appear more often or which
are critical in terms of efficiency.
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However, as CRISP is still in an early stage of definition – we plan to gather
as much information as we can from the experiments and potential users of the
language – we will in this paper refrain from discussing it further, and will focus
instead on the Prolog implementation of rules.

In our approach we transcribe the violations of coding rules as Prolog predi-
cates, their arguments being the entities of interest to the programmer. In this
way the verification method can return references to the elements in the source
code which have to be corrected. Furthermore, coding the negated form of a rule
as a logical formula results more natural in many cases.

On the right-hand side of Fig. 1, gathering of structural information from
a particular C++ software development project is depicted. To extract this
information we are currently taking advantage of the source code analysing
tool Source-Navigator [5], that generates a database of architectural and cross-
reference information of a software project.3 A set of Prolog facts representing
the same structural information is automatically generated from the Source-
Navigator knowledge database.

Validating the C++ software development project against the coding rules is
then realised by executing, in the Ciao Prolog System [6], each of the Prolog
predicates representing a coding rule violation together with the Prolog facts
representing the project structural information. A positive answer to a query
will flag a violation of the corresponding rule, and the culprits will be returned
in the form of bindings for the predicate arguments. On the other hand, failure
to return an answer means that the project conforms to that particular rule.

4 Rule Formalisation

In what follows we will look at how actual HICPP rules can be formalised using
logic programming.

Coding the rules requires a set of language-specific predicates representing
structural information about, e.g., the inheritance graph of the checked program,
its call graph, etc. We use an order sorted logic [7] to define these predicates with
the purpose of categorising different concepts of the language. Sorts in Prolog are
implemented as unary predicates, which is not suitable for constructive negation
and the meaning we want to give to quantifiers, as will be seen in Sect. 4.3.

Some representative predicates targeting C++ – in particular those used in
the next rule examples –, and a significant fraction of the sorts relevant to them
are listed in Table 1. Some predicates appear categorised as primitive: they
concern base facts that have to be provided by the compiler (i.e. GCC) in the
process of compiling a source program. Note that, in general, processing a single
compilation unit is not enough: extracting information pertaining a full program
or library is required for the analysis we are aiming at. More sophisticated pred-
icates can be constructed in terms of primitive predicates: some examples are
given in the table in the derived predicates section.
3 We are, however, experimenting with using other source code analysis tools for struc-

tural information extraction, including GCC 4.X itself.
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Table 1. A subset of sorts and predicates necessary to describe structural relations
in C++ code. Sorts of predicate arguments are abbreviated: C for class sort, M for
method, etc. [S] is a list of elements of sort S.

Predicate Meaning

Sorts

class(C) C is a class.
method(M) M is a member function.
type(T ) T is a C++ well-formed type.
template instance(TI) TI is an instance of a template
identifier(I) I is a class or method identifier.

Primitive predicates

immediate base of(a : C, b : C) Class a appears in the list of explicit base
classes of class b.

public base of(a : C, b : C) Class b immediately inherits from class a with
public accessibility. There are analogous
predicates for other accessibility choices and
also for virtual inheritance.

declares member(a : C, n : N, m : M) Class a declares a member m with name n.
has method(c : C, m : M) Class c has defined the m method.
constructor(c : M) Method c is a constructor.
destructor(d : M) Method d is a destructor.
virtual(v : M) Method v is dynamically dispatched.
calls(a : M, b : M) Method a has in its text an invocation of

method b.
sig(m : M, i : I, a : [T ], r : T ) Method m has name i, argument type a and

result type r.

Derived predicates

base of(a : C, b : C) Transitive closure of immediate base of/2.
inheritance path(a : C, b : C, p : [C]) Class b can be reached from class a through

the inheritance path p.

4.1 Some Examples of HICPP Rule Formalisation

Rule 3.3.15 of HICPP reads “ensure base classes common to more than one
derived class are virtual.” This can be interpreted as requiring that all classes
with more than one immediate descendant class are virtually derived, which
seems far too restrictive. In the justification that accompanies the rule, it is
made clear that the problem concerns repeated inheritance only (i.e., when a
replicated base class is not declared virtual in some of the paths). Whether all
paths need to use virtual inheritance, or only one of them, is difficult to infer
from the provided explanation and examples. This kind of ambiguity in natural
language definitions of coding rules is not uncommon, and is a strong argument
in favour of providing, as we do, a formalised rule definition amenable to be used
by an automatic checker.

The C++ definition of virtual inheritance makes clear that, in order to avoid
any ambiguities in classes that repeatedly inherit from a certain base class, all
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inheritance paths must include the repeated class as a virtual base. As we want
to identify violations of the rule, a reformulation is the following:

Rule 3.3.15 is violated if there exist classes A, B, C, and D such that:
class A is a base class of D through two different paths, and one of the
paths has class B as an immediate subclass of A, and the other has class
C as an immediate subclass of A, where B and C are different classes.
Moreover A is not declared as a virtual base of C.

Fig. 2 shows, among others, the Prolog formalisation of a violation of rule
3.3.15. The success of a query to violate_hicpp_3_3_15/4 would exemplify an
example of violation of HICPP Rule 3.3.15.4

Note that the fact that all variables refer to classes is marked at the moment
– as Prolog is used – with a predicate class/1, whose clauses are provided as
part of the project description, and similarly for other sorts in other predicates.
A suitable definition of base of is also necessary:

base_of(A,A).
base_of(A,B) :- immediate_base_of (A,C), base_of(C,B).

In the case of 3.3.15, the four involved classes are not necessarily distinct,
but it is required that B and C do not refer to the same class, and that both are
immediate descendants of A. The terms base_of(B,D) and base_of(C,D) point out
that class D must be a descendant of both B and C, through an arbitrary number
(maybe zero) of subclassing steps. Finally, for the rule to be violated we require
that class A is not virtually inherited by class C. The use of negation in rules is
further developed in Sect. 4.3.

Fig. 3 depicts a set of classes and their inheritance relations which make the lit-
eral violate_hicpp_3_3_15(’::Animal’,’::Mammal’,’::WingedAnimal’,’::Bat’)

deducible, thus constituting a counterexample. If the inheritance from ’::Animal’

to ’::WingedAnimal’ were also virtual, the goal would fail (no counterexample
could have been found). Note that the rule is more general than it may seem: for
example, it does not require that classes B and D are different. Thus, if (nonsensi-
cally) ’::Mammal’ and ’::Bat’ in Fig. 3 were the same, a property violation would
still be detected.

Another rule that can be easily implemented in this framework but requires
disjunction is rule HICPP 3.3.13 specified as “do not invoke virtual methods of
the declared class in a constructor or destructor.” This rule needs, additionally,
information about the call graph of the project.

Rule HICPP 3.3.2 states “write a ‘virtual’ destructor for base classes.” The
rationale behind this requirement is that if an object will ever be destroyed
through a pointer to its base class, the correct version of the destructor code
should be dynamically dispatched. This rule illustrates the necessity of existential
quantification; also, the construction “does not exist” appears repeatedly in rule
formalisation. Some hints about quantification are also provided in Sect. 4.3.

4 We will use a similar naming convention hereinafter: violate_hicpp_X_Y_Z/N is the
rule which models the violation of the HICPP rule X.Y.Z.
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violate_hicpp_3_3_15(A,B,C,D) :-
class(A), class(B), class(C), class(D),
B \= C,
immediate_base_of(A,B), immediate_base_of(A,C),
base_of(B,D), base_of(C,D),
\+ virtual_base_of(A,C).

violate_hicpp_3_3_13(Caller ,Called) :-
method(Caller), method(Called),
has_method(SomeClass ,Caller),
(

constructor(Caller)
;

destructor(Caller)
),
has_method(SomeClass ,Called),
virtual(Called),
calls(Caller ,Called ).

violates_hicpp_3_3_2(BaseClass) :-
class(BaseClass),
exists_some_derived_class_of(BaseClass),
does_not_exist_virtual_destructor_in(BaseClass ).

exists_some_derived_class_of(BaseClass) :-
immediate_base_of(BaseClass ,_).

does_not_exist_virtual_destructor_in(Class) :-
\+ (

has_method(Class ,Destructor),
destructor(Destructor),
virtual(Destructor)

).

violate_hicpp_16_2(Class) :-
template_instance(Class),
has_method(Class ,Method1),
has_method(Class ,Method2),
Method1 \== Method2 ,
sig(Method1 ,Name ,ArgsT ,ResT),
sig(Method2 ,Name ,ArgsT ,ResT).

violate_hicpp_3_3_1 (Base ,Derived) :-
class(Base), class(Derived),
(

private_base_of(Base ,Derived)
;

protected_base_of(Base ,Derived)
).

violate_hicpp_3_3_11(BaseClass ,Super ,Class) :-
class(Class), class(Super),
base_of(Super ,Class), Class \= Super ,
declares_member(Class ,ClassMethod),
declares_member(Super ,SuperMethod),
sig(ClassMethod ,Name ,Args ,Ret),
sig(SuperMethod ,Name ,Args ,Ret),
\+ virtual(SuperMethod),
\+ virtual(ClassMethod ).

Fig. 2. Formalisation of some HICPP rules
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::Animal

::Mammal ::WingedAnimal

::Bat

virtual

class(’:: Animal’).
class(’:: Mammal’).
class(’:: WingedAnimal ’).
class(’::Bat’).
immediate_base_of(’:: Animal’,’:: Mammal’).
immediate_base_of(’:: Animal’,’:: WingedAnimal ’).
immediate_base_of(’:: Mammal’,’::Bat’).
immediate_base_of(’:: WingedAnimal ’,’::Bat’).
virtual_base_of(’:: Animal’,’:: Mammal’).

Fig. 3. Violation of rule HICPP 3.3.15 and automatically generated Prolog facts

template < typename T > class A {
public:
void foo( T );
void foo( int );

};

template class A< int >; // void foo(int) declared twice!

Fig. 4. Violation of rule HICPP 16.2

Rule HICPP 16.2 reads “do not define a class template with potentially con-
flicting methods.” The code snippet in Fig. 4, taken from [2], illustrates how
not following the rule can hamper software maintenance and reusability: the
template instantiation generates two methods with identical signature.

A formalisation of the rule negation (and, in fact, a program capable of catch-
ing non-compliant code) can be easily written using unification and logic vari-
ables to represent template parameters (see Sect. 4.2 for more details), as shown
in predicate violate_hicpp_16_2/1 (Fig. 2).

Syntactic rules are also trivially expressible in this framework provided that
enough information about the abstract syntax tree is reified into the knowledge
base about the program, even if more efficient ways of dealing with these rules
exist. Predicate violate_hicpp_3_3_1/2 (Fig. 2) shows a Prolog representation
of rule HICPP 3.3.1, that reads “use public derivation only.”

HICPP rule 3.3.11, as captured by predicate violate_hicpp_3_3_11/3 (Fig. 2)
forbids overloading or hiding non-virtual functions.

HICPP has a conservative spirit which we want to retain in our rules: any
potentially dangerous situation is altogether forbidden, regardless of whether it
can actually happen in a given environment (i.e., in a complete program). This is
very sensible: on one hand, from the point of view of program maintenance, initial
conditions may evolve in unforeseeable directions, and protecting the project is
very reasonable; on the other hand, when libraries are being developed, these
will be used in an a priori unknown environment.

The following paragraphs discuss the Prolog translation of rules.
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4.2 Types, Classes, and Generic Constructs (Templates)

Parametric polymorphism is realised in C++ by means of templates. We are
not dealing, at the moment, with a complete representation of templates, but
only with those whose parameters are classes and basic types. The names of the
parametrised classes are introduced in the knowledge base as function symbols
belonging to the class sort. Template parameters are modelled with logic vari-
ables, which makes it possible to deal with template instantiation directly by
means of variable instantiation. To illustrate our approach the following Prolog
code would be generated from code in Fig. 4:
%% Knowledge base about typing in C++
type(void_type ).
type(boolean_type ).
...
type(pointer_type (T)) :- type(T).

%% Project -specific data
template_instance (’::A’(T)) :- type(T).
...

This code states that, for a particular project, terms of the form ’::A’(t) are of
sort template instance if t is any type. This paves the way for a richer language in
which types are first-order citizens and can be subject to arbitrary constraints (in
particular equality and disequality, but also notions of subsumption, if needed).
This makes up what is necessary to check for violations of rule HICPP 16.2
(recall Fig. 4).

On the other hand, having such power leads to issues as the infinite set of an-
swers for the goal ?- template_instance(C). due to the definition of the scheme
for pointer types being used to construct all possible instances of template ’A’.
Some of these cases can be worked around by using well-known evaluation tech-
niques such as tabled resolution (see, e.g., [8] for a basic reference), delay of
selected goals, and use of a suitable constraint system. A correct treatment
of disequality constraints needs dealing explicitly with negation of non-ground
goals.

4.3 Negation and Quantifiers

Negation appears in coding rules in various forms. On one hand, there is the issue,
already mentioned, that predicates specifying the violation of rules (i.e. their
negation) tend to be easier to translate into Prolog. But this is not necessarily the
case for every structural rule, so some method for automatically generating one
version from the other would be very useful. Also, we have seen that disequalities
and predicates representing the complement of basic relations occur frequently
in the rules.

The main problem with the built-in negation operators in Prolog – see the “\+”
in the last line of violate_hicpp_3_3_15 – is that correctness is only guaranteed
under certain run-time conditions, i.e. the negated literal must have no free
variables at call time. While experienced Prolog programmers usually develop
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a sixth sense that allows them to place negated literals only in safe places,5 a
general solution must be provided that allows a CRISP compiler to generate
correct Prolog code in all cases. Notice how this problem is shared with the
disequality operators – see the “\=” in the third line of violate_hicpp_3_3_15.

Extensions to Prolog allowing free variables in negated literals do exist under
the name constructive negation. Among these, intensional approaches apply a
source transformation in order to obtain, for a given predicate p in the original
program, a negative version neg p. Our choice has been to use our own imple-
mentation, named constructive intensional negation [10], as it deals properly
with the kind of knowledge bases that we are generating from the project code –
positive and potentially infinite, as explained in Sect. 4.2. Negative constructive
answers are possible thanks to a disequality constraint library replacing stan-
dard Prolog disequality. This, of course, also solves the problem with disequality
operators.

The case of universal quantification is similar to negation. It appears both ex-
plicitly in the specification of the rules and also implicitly – generated during the
transformation implementing intensional negation of clauses with free variables.
Fortunately, our intensional negation library comes equipped with a universal
quantification mechanism which is semantically sound and complete for bases
satisfying certain conditions.

Finally, for this application, both negation and universal quantification must
be implemented in a sort aware way, i.e. negated predicates must represent the
complement of relations w.r.t. their sorts and the universal quantification of a
predicate must hold if, and only if, it holds for every element of its sort, etc. This
precludes a naive treatment of sorts as regular Prolog predicates. For example,
looking at typical rules like HICPP 3.3.15 or HICPP 16.2, whose violation is
formalised in Prolog in Fig. 2, we see that both clauses start with some sort
requirements (class(A), class(B) . . . ). A straightforward application of the in-
tensional negation transformation of such clauses would not produce the right
code. From a clause of the form

r(X) ← sorts(X) ∧ p(X)

we would obtain
neg r(X) ← neg sorts(X)
neg r(X) ← neg p(X)

rather than the desired

neg r(X) ← sorts(X) ∧ neg p(X)

where p is the part of the clause not containing any sort requirements and neg p
and neg sorts have been obtained using an standard transformation. Notice how
sorts must remain positive in the negated version.

5 Static analysis techniques have been developed to actually prove these tricks correct,
see for instance [9].
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Table 2. A brief description of the open-source C++ projects that have been analysed
for rule violations. KLoc measured by sloccount.

Project Version Description KLoc

Bacula 2.2.0 A network based backup program. 20
CLAM 1.1.0 C++ Library for Audio and Music. 46
Firebird 2.1.0.15999-Beta1 Relational database with concurrency and

stored procedures.
439

IT++ 3.10.12 Library for signal and speech processing. 39
OGRE 1.4.3 (Linux/OSX) Object-Oriented 3D Graphics Rendering En-

gine, scene-oriented.
209

Orca 2.5.0 Framework for developing component-based
robotic systems.

89

Qt 4.3.1 (X11 opensource) Application development framework and
GUI widgets library.

595

5 Experimental Results

We have developed a prototype that allows for implementing some syntactic and
structural coding rules and running them over a C++ source code tree, reporting
rule violations.6 Some of the rules described in Sect. 4.1 have been applied to
the C++ open-source software projects appearing in Table 2.

A measure of the size of each project is provided in the table in the form of
physical lines of code (KLoc column). All analysed projects can be considered
mature but they diverge in their size and application area, covering as a whole a
wide range of C++ design techniques. Some of them are final applications, and
others are libraries of reusable components. Testing code and examples included
in many projects have been excluded from the analysis wherever possible.

Our checking tool has been constructed on top of the Prolog engine Ciao [6].
Until full integration into the GCC pipeline is done, we use, as mentioned before,
the open source tool Source-Navigator to extract the needed data about C++
programs. Source-Navigator covers almost the whole C/C++ language and it is
able to quickly analyse projects with thousands of source code files. Internally,
Source-Navigator stores project facts in Berkeley DB (BDB) tables. The conver-
sion of static information into the Prolog facts shown in Table 1 was realised by
a simple Tcl program that traversed the Source-Navigator database using a Tcl
Application Programming Interface.

Validating the C++ software development project against its coding rules
is then realised by executing, in the Ciao Prolog System, each of the Prolog
predicates representing a coding rule violation together with the Prolog facts
representing the structural information about the project.

Table 3 shows, for each software project, the number of violations automatically
detected for each implemented rule, together with the execution time consumed by

6 The source code of this and subsequent prototypes will be available at
https://babel.ls.fi.upm.es/trac/ggcc/.
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Table 3. Experimental results on a sample of HICPP coding rules and open-source
projects. SN time is the time spent by Source-Navigator on partially parsing the
source code and storing the needed facts into a database. LD time is the time taken
by loading the facts into the Prolog engine and pre-calculating the closure base of .
Cells for rule columns show no. of violations found (execution time). All times are user
time expressed in seconds.

Project SN time LD time Rule 3.3.1 Rule 3.3.2 Rule 3.3.11 Rule 3.3.15

Bacula 1.53 0.24 0 (0.00) 3 (0.03) 0 (0.00) 0 (0.00)
CLAM 1.82 1.62 1 (0.00) 15 (0.47) 115 (0.12) 0 (0.24)
Firebird 6.48 2.61 16 (0.00) 60 (1.02) 115 (0.21) 0 (0.27)
IT++ 1.18 0.42 0 (0.00) 6 (0.03) 12 (0.01) 0 (0.00)
OGRE 4.73 3.05 0 (0.00) 15 (0.94) 79 (0.21) 0 (0.31)
Orca 2.51 1.17 1 (0.00) 12 (0.38) 0 (0.09) 0 (0.16)
Qt 12.29 10.42 15 (0.01) 75 (10.53) 1155 (1.32) 4 (1.21)

all the necessary steps of the checking procedure. It can be seen that every project
violates some rule and that non-conformant code has been found for every rule.

The fact that rule HICPP 3.3.15 is violated by only one project (Qt) is a direct
consequence of the close to zero use of repeated (“diamond-like”) inheritance
in actual C++ projects. The same infrastructure devoted to check coding rules
compliance has been used to detect multiple inheritance and repeated inheritance
instances. The conclusion is that multiple inheritance – an important object-
oriented design and implementation mechanism – is used very rarely, and the
only analysed projects that have taken advantage of repeated inheritance are
IT++ and Qt, and even there is applied very few times. Despite the efforts done
to include those features into the language [11], its hazards and subtleties seem
to have convinced many developers that they have to be completely avoided.
Rule HICPP 3.3.15 (in combination with other HICPP rules) is oriented towards
permitting a reliable use of multiple and repeated inheritance. A wider adoption
of coding standards like HICPP could have the paradoxical effect of popularising
some denigrated – but useful – C++ features.

Another interesting aspect of these initial experiments is that they have con-
firmed that relying solely on manual checking is not a feasible approach to enforce
coding rules. Manually approve or reject those violations reported by the check-
ing tool has turn out to be a too tedious and error-prone task. Note that for
some rules (e.g. HICPP 3.3.11) the amount of violations is rather big. Moreover,
even for simple rules as HICPP 3.3.2 (easy to state and to formalise in Prolog),
rule requirements can be fulfilled in many ways, some of them not easy to grasp
from the source code. In this particular case a virtual destructor has to be looked
for in all the superclasses of a given class.

Execution times have been included in Table 3 to show that a non-negligible
amount of time is used to run non-trivial rule violation detectors over the biggest
projects, but they are still bearable – as far as rule enforcing machinery is not
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expected to run in every compilation or, alternatively, that incremental rule
checking is implemented. SN time and LD time are executed once per project.
The experiments have been run in a 32 bits Intel Dual Xeon 2.0 GHz and code
is completely sequential in all measured steps. In a similar way as base of , other
intermediate relations could be pre-computed on initialisation for improving per-
formance, or even more general tabling techniques might be used.

6 Related Work

To our knowledge, our proposal is the first attempt at using declarative tech-
nology for formally specifying and automatically checking coding rules. A re-
lated area where some academic proposals exist that apply first-order logic and
logic programming is formalisation and automatic verification of design pat-
terns [12,13,14]. In [14], facts about a Smalltalk program are reified into a logic
programming framework. In [13] a very similar setting is developed targeting
the Java language. Both formalisms can deal with the structural relations nec-
essary to define the static aspects of design patterns. But none of them use true
sorts for quantification nor can cope with infinite domains or recursively defined
objects in the target language. This fact makes both approaches unable to repre-
sent C++ template parameters as logic variables and reason about hypothetical
instantiations of templates as we do in rule HICPP 16.2.

A different area where some interesting ideas can be borrowed from is auto-
matic bug finding techniques. The “bug pattern” term in [15] is very close to
our concept of what a rule violation is. It uses structural information, but no
mechanism is provided for the user to define its own bug patterns. On the other
hand, [16,17] define a domain-specific language to create custom checks for C
code, and [18] uses a declarative language for checks on Java. All three are based
on automata and syntactic patterns, and are specially oriented to the kind of
program properties related with dynamic rules (see Sect.2). The language in [17]
is the least expressive of the three but, interestingly, the checking facility has
been integrated into a GCC branch.

7 Conclusion

This paper presents a logic programming-based framework to specify industrial
coding rules and use them to check code for conformance. These coding rules
express what are perceived as good programming practises in imperative/object-
oriented programming languages. Our framework is in principle language-agnos-
tic, and the particular characteristics of a given language (kinds of inheritance,
etc.) can be modelled seamlessly and with little effort.

The properties we tackle range from syntactic to semantic ones, although
in this paper we have focused on the so-called “structural properties”, which
address programming projects as a whole and have as basic components entities
such as classes, methods, functions, and their relations.
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In contrast with our approach, current commercial tools like those mentioned
in Sect. 1 do not provide the user with any simple – and at the same time pow-
erful enough – mechanism to define new coding rules. If extensibility is possible
at all, new checks must be programmed directly in C or C++ and access the in-
ternal representation of the analysed code managed by the tool. Moreover, these
tools cannot be considered semantically reliable due to the absence of a formal
specification of their intended behaviour.

The inference engine we are currently using to perform rule violation detec-
tion is plain Prolog, which can be queried to discover witnesses of evil patterns.
Speed is, so far, very satisfactory, and we have been able to run non-trivial rules
in projects with half a million LOC in around ten seconds using a standard PC.
We have specified a good number of coding rules, of which we have selected what
we think is a relevant and interesting subset. As expected, the main problem is
not in the coding itself, but in understanding clearly what is the exact meaning
of the rule. This is, of course, part of the raison d’être of the coding rule for-
malism. Tests have shown rule violations in very well-known and well-regarded
projects.

This work is part of a bigger project which is just giving its first results and
whose final aim is to be delivered as part of the GCC suite. Defining a stable
subset of CRISP is a priority among the directions for future research. The use
of a highly enriched logic-based domain-specific language must bridge the gap
between the expressive but ambiguous natural language and the rigorous, but
somewhat more constraining language of formal logic. In order to keep CRISP
declarative while maintaining the efficiency of the Prolog code obtained by hand,
a translation scheme must be defined that carefully handles the critical aspects
in the Prolog implementation identified so far: negation and disequalities in the
presence of free variables, universal quantification, sort constraints, etc.

Mid-term tasks include connecting the framework with other parts of the
GGCC project (e.g. static analysis) in order to cover more complex rules and, of
course, in order to gain more practical experience both in terms of expressiveness
and performance when analysing very large projects. Regarding the latter, there
seems to be some room for improvement by discovering recurring patterns –
e.g. the fact that transitive closures appear very often in coding rules suggests
a potential for tabling, etc.

In the long term, ways of obtaining the needed information about programs
directly from the natural language description of the coding rules, can be con-
sidered, e.g. by reformulating them into the so called controlled natural lan-
guages [19] like ACE, CLCE, etc., subsets, for instance, of English, that can be
understood unambiguously and automatically. However, the source of ambiguity
is not (only) the language itself, but also the assumption of some implicit infor-
mation (e.g. pertaining to a certain domain or organisation) that may be not
be obvious for an external user. The formalisation process, when the target lan-
guage is declarative and simple enough like CRISP, enforces explicitly including
these assumptions and, hence, solve the ambiguities.
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Abstract. In this paper we discuss an approach to support declarative
reasoning over aspect-oriented (AO) programs, adopting AspectJ as a
representative technology. The approach is based on the transformation
of source code into a set of facts and rules, stored into a Prolog database.
Declarative analysis allows us to extract complex information through its
rich and expressive syntax. Our approach has two contributions. First,
it aims to improve the comprehension of AspectJ programs. The type
of knowledge provided is categorized in three main groups: i) general
knowledge, ii) bad smells, and iii) quality metrics. The second contribu-
tion is the provision of dependency analysis of AspectJ programs. To that
end, we identify dependencies in aspect-oriented programs, and translate
them into Prolog rules. Expected beneficiaries of our approach include
system maintainers who can obtain comprehension and perform depen-
dency analysis through querying the Prolog database during the change
planning stage of system evolution.

Keywords: Program comprehension, static analysis, dependency anal-
ysis, declarative reasoning, aspect-oriented programming, AspectJ pro-
gramming language.

1 Introduction

Software maintenance is defined as “the modification of a software product after
delivery to correct faults, improve performance (or other attributes) or to adapt
the product to a modified environment” (ANSI/IEEE standard 1219-1998). The
objective of maintenance is to enhance and optimize an existing system while
preserving its integrity [7]. The initial step of software maintenance is program
comprehension, and it demands effort and time, initially to understand the soft-
ware system and then to identify possible problems to be fixed while providing a
remedy for them without affecting the overall behavior of the system. Statistics
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indicate that the amount of time required for software comprehension consti-
tutes a significant proportion of the maintenance process. This is particularly
important while comprehension is deployed as the first step during change plan-
ning. In this phase, modifications of specific parts of the system would normally
affect other parts of the target system due to dependency relationships between
entities. Experience shows that making software changes without understand-
ing their effects can lead to underestimated efforts, delays in release schedules,
degraded software design and unreliable software products. Estimating and an-
alyzing the potential consequences of carrying out a change provides effective
information for the maintainers. To this end, dependency analysis provides feed-
back about the possible impact of modification of the software system.

The rest of the paper is organized as follows: In Section 2 we provide the
necessary theoretical background to aspect-oriented programing and the AspectJ
language which we use as a notable representative technology. In Section 3 we
discuss the problem and motivation behind this research. In Section 4 we present
our proposal. We discuss our methodology in Sections 5, 6 and 7. We illustrate
how our approach can be deployed for a typical exploration task with a case study
in Section 8. We discuss related work in Section 9 and we provide an evaluation
of our approach in Section 10. We conclude our discussion in Section 11.

2 Theoretical Background: Aspect-Oriented
Programming (AOP) and AspectJ

The principle of separation of concerns [17] refers to the realization of system con-
cepts into separate software units and it is a fundamental principle of software de-
velopment. The associated benefits include better analysis and understanding of
systems, improved readability of code, increased level of reusability, easy adapt-
ability and good maintainability. Despite the success of object-orientation in
the effort to achieve separation of concerns, certain properties in object-oriented
systems cannot be directly mapped in a one-to-one fashion from the problem
domain to the solution space, and thus cannot be localized in single modular
units. Their implementation ends up cutting across the inheritance hierarchy of
the system. Crosscutting concerns (or “aspects”) include persistence, authentica-
tion, synchronization and contract checking. Aspect-oriented programming [13]
explicitly addresses those concerns by introducing the notion of aspect, which
is a modular unit of decomposition. Currently there exist many approaches and
technologies to support AOP. One such notable technology is AspectJ [12], a
general-purpose aspect-oriented language, which has influenced the design di-
mensions of several other general-purpose aspect-oriented languages, and has
provided the community with a common vocabulary based on its own linguistic
constructs. In the AspectJ model, an aspect definition is a new unit of modularity
providing behavior to be inserted over functional components. This behavior is
defined in method-like blocks called advice. However, unlike a method, an advice
block is never explicitly called. Instead, it is only implicitly invoked by an associ-
ated construct called a pointcut expression. A pointcut expression is a predicate
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over well-defined points in the execution of the program which are referred to
as join points. When the program execution reaches a join point captured by a
pointcut expression, the associated advice block is executed. Even though the
specification and level of granularity of the join point model differ from one
language to another, common join points in current language specifications in-
clude calls to - and execution of methods and constructors. Most aspect-oriented
languages provide a level of granularity which specifies exactly when an advice
block should be executed, such as executing before, after, or instead of the code
defined at the associated join point. Furthermore, several advice blocks may ap-
ply to the same join point. In this case the order of execution is specified by
rules of advice precedence specified by the underlying language [14].

3 Problem and Motivation

With an increasing number of tools and support of a community of develop-
ers and researchers, the AspectJ programming language is perhaps the most
notable aspect-oriented technology. Aspect-oriented programing improves the
modularity of systems by allowing programmers to reason about individual
concerns in relative isolation. However, the improvement of modularity comes
with the cost of overall program comprehension. To achieve comprehension of
the entire aspect-oriented program, one must take into consideration not just
inter-component dependencies but also all aspect-to-component dependencies.
However, the implicit interdependency between aspects and classes demands
more careful investigation. The obliviousness property in general-purpose aspect-
oriented languages [10] such as AspectJ implies that for a given piece of compo-
nent functionality f, we need to iterate over all aspect definitions to see which
pointcut predicates refer to f and which advice may be combined with f. Manual
analysis can be tedious and error prone, particularly for medium- to large-scale
systems. To this end, some tool support is currently available. The Eclipse As-
pectJ plug-in provides some level of visualization (see related work). However,
there is certain type of knowledge over an AspectJ program which is neither
straightforward to obtain nor can be provided through this plug-in. For example
the following information can only be manually extracted:

1. “Fragile aspects” [21]: those which contain pointcuts written in a way which
makes them highly vulnerable to any changes in the component code.

2. Aspects that have precedence over a given aspect.
3. Aspects that are advising protected methods only.

Dependency analysis requires program comprehension and it is based on the
definition of dependencies that exist among software entities. In the literature
many techniques are introduced for dependency analysis, while most of them
are adopted for procedural or object-oriented systems. The majority of these
techniques are deployed over a system dependency graph (SDG) and slicing
methods. However, graph-based analysis lacks scalability which makes the inves-
tigation difficult even for a medium-scale system. Moreover, it is very difficult
to manually traverse an SDG even for a small-scale system.
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The motivation behind this research is to provide a fine-grained model for
the representation of program elements and their inter-dependencies in aspect-
oriented programs through the deployment of declarative reasoning in order to
obtain comprehension and to perform dependency analysis.

4 Proposal: Declarative Reasoning of Aspect-Oriented
Programs

We propose the adoption of declarative reasoning to achieve comprehension and
dependency analysis of AspectJ systems. To achieve this goal, we need to per-
form a transformation from source code to a declarative representation. To gain
comprehension, we plan to adopt strategies from the literature (see Section 6).
These strategies will be translated as rules in a Prolog database. In order to per-
form dependency analysis, we plan to identify dependencies in an aspect-oriented
program and to codify them as Prolog rules. Some of these dependencies will
be adopted from the literature [26], while some others will be introduced (see
Section 7). Comprehension can then be obtained by executing queries on the
Prolog database (see Figure 1).

The expected contribution of this proposal is to provide a proof of concept
for an automated environment under which one can obtain knowledge over an

Fig. 1. UML activity diagram illustrating our proposal
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AspectJ-like program where this knowledge would otherwise have been difficult
or impossible to obtain through existing techniques. Potential beneficiaries of
this approach include system maintainers who can perform dependency analysis
by querying the database on what elements of the system would be affected
should a specific change occur.

The Prolog language has its foundation in logic which allows programmers to
define solutions to problems in a logical manner. Its built-in pattern-matching
mechanism (unification) makes it possible to bound variables to complex struc-
tures which can themselves contain other variables. Moreover, unification pro-
vides a mechanism to find multiple solutions for a given problem. In addition
to above, Prolog can be deployed as a query language for a database of simple
facts for matching complicated patterns. We feel that Prolog is more suitable
than other query languages (e.g the Standard Query Language - SQL) for our
approach since our database would contain simple facts, but a lot of complex
search rules. For example, the derivation rules of Prolog enable us to define re-
lations between facts. However, with SQL we would need to store facts for each
relation (views in relational database) and we cannot build view recursively [15].
Deploying SQL would be more beneficial with a great amount of very complex
data and with simple search rules. Prolog makes it relatively straightforward to
specify, execute and refine complex queries over facts.

5 Model Transformation

In order to transform an AspectJ program into a set of Prolog facts, we have
defined a set of transformation rules given in Tables 1 and 2. The transformation
process from source code to facts is broken into two steps. First, the abstract
syntax tree (AST) corresponding to each compilation unit of the program (.java
and .aj files) is retrieved and traversed. Second, the AspectJ structure model
(ASM) is retrieved and traversed to provide additional information regarding
the relationship among pointcuts, methods and advice blocks. The extracted
information from the steps above is then translated to facts according to the
transformation rules. These facts are then added to the fact-base and used during
the inference process.

6 Model Comprehension

We have added a set of rules to the database in order to capture relationships
between entities in the system. These rules are context-free, i.e. they are inde-
pendent from the particular applications in which they are being deployed. The
rules are categorized into three types, based on the motivation by which they
were created:

General Rules. We have built certain general rules in order to extract knowl-
edge about the static structure of the program, like inheritance relationships,
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Table 1. Transformation rules - Part I

Transformation rules Definition
<visibility>:= <public> | <private> | <protected> |
<package>

visibility of a feature is <public> or
<private> or <protected>

[class](<className>, <visibility>) class_name is a class with <visibility>

[finalClass](<className>) className is a final class

[abstractClass](<className>) className is an abstract class

[interface](<interfaceName>, <visibility>) interfaceName is an interface with
<visibility>

[extends](<subClassName> (| <subInterfaceName> |
<SubAspectName>),<superClassName>
(| <superInterfaceName> | <SuperAspectName>))

Class subClassName (or subInterfaceName or
SubAspectName) extends superClassName (or
superInterfaceName or SuperAspectName)

[implements](<className>, <interfaceName>) Class class_name implements interface
interface_name

[aspect](<aspectName>, <visibility>) aspectName is an aspect with <visibility>

[privilegedAspect](<aspectName>) aspectName is a privileged aspect

[new](<className1>, <methodName1>, <ClassName2>) An instance of <ClassName2> is instantiated
in method <methodName1> in <className1>

<attributeType>:= 0 | 1 | 2 | 3 <attributeType> can be final (1), or static
(2), or final-static (3), and if it is not any of
the previous types it is marked 0

[attribute](<className> |<aspectName> |
<interfaceName>, <attName>, <Type>, <visibility>,
<attributeType>)

<attName> of type <Type> is an at-
tribute declared in class className or
aspect aspectName or interfaceName with
<visibility>

<methodType>:= 0 | 1 | 2 | 3 <methodType> can be abstract( 1), or static
(3), or final (2) and if it is not any of the
previous types it is marked 0

[method](<className> | <aspectName> |
<interfaceName>, <methodName>, <visibility>,
<Type>, <ListOfParameters>, <methodType> )

<methodName> , with <ListOfParameters> pa-
rameters and access modifier public or
private or protected and return type <Type>
is declared in <className> or <aspectName>
or <interfaceName>

[sendMessage](<className1>, <methodName1>,
<ListOfParameters1>, <className2>, <methodName2>,
<ListOfParameters2>)

A message methodName2 is sent to
<className2> from methodName1 in
<className1>

[used](<aspectName>, <adviceId>, <ListOfParameters1>,
<className>, <methodName>, <ListOfParameters>)

<methodName> in class <className> is invoked
by <adviceId> in <aspectName>

[accessFeature](<className1>, <methodName1>,
<className2>, <InstanceVariableName2>)

<className1> accesses
<InstanceVariableName2> of <className2>
from <methodName1>

[constructor](<className>, <visibility>,
<ListOfParam> )

<className> has a constructor with
<ListOfParam> parameters

dependencies between aspects and classes, etc. These constitute the core rules
defined in our system, and the two subsequent categories of rules are built based
on this group. One such example is Declared Method in Inheritance Hierarchy,
(Figure 2).

We also have defined rules to obtain the following: Aspect monitoring features
of a class (methods, attributes) with specific modifiers, Aspects with precedence
over a specific aspect, Methods advised by a pointcut, Messages to which a class
responds, etc.(see Section 7).
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Table 2. Transformation rules - Part II

Transformation rules Definition
[declareParent](<aspectName>,<Type1>,
<Type2> )

<Type2>is declared to be the supertype of
<Type1> in <aspectName>

[introducedMethod](<aspectName>,<TypeName>,
<methodName>,<visibility>, <ReturnType>,
<ListOfParameters>,<methodType>)

<aspectName> declares a method
<methodName> with <visibility>,
<ReturnType>,and <ListOfParameters>
for class <TypeName>

[introducedAtt](<aspectName>,<TypeName>,
<AttName>,<Type>,<visibility>,
<attributeType>)

<aspectName> declares an attribute
<AttName> with, <Type> for a type
<TypeName>

[pointcutdesig](<pointcutDesignatorId>,<aspectName>,
<pointcutName>,<joinpoint>,<ListOfParam>)

<joinpoint> with a unique id
<pointcutDesignatorId> defined in
aspectName

<pointcutType>:= 0 |1 |2 <pointcutType> can be abstract (1), static
(2), and if it is not any of the previous types
it is marked 0

[pointcut](<aspectName>,<pointcutName>,<ListOfParam>,
<visibility>,<pointcutType>)

<pointcutName> defined in <aspectName>

<joinpoint>:= call| execution| target| args| this <joinpoint> can be call, execution, target,
args, or this

<adviceType>:= before, after, around <adviceType> is before , after or around

[triggerAdvice](<aspectName>, <adviceType>,
<adviceId>,<ListOfParam>, <returnType> )

Advice <adviceType> belongs to
<aspectName> aspect

[advicePointcutMap](<aspectName>, <adviceType>,
<adviceId>, <pointcutName> )

Advice <adviceType> defined in
<aspectName> aspect is related to the
pointcut <pointcutName>

[precedence](<aspectName>, <listOfAspect>) <precedence> rule is defined in aspect
<aspectName>, and <listOfAspect> contains
list of aspects according to their precedence

Rules to Identify Bad Smells. Rules to identify potential bad smells (identi-
fying anomalies where refactoring may be required) are influenced by
aspect-oriented refactoring strategies such as those discussed in [16] where the
authors describe typical situations in aspect-oriented programs which can be
problematic along with recommended refactoring strategies. In this work we are
only interested in the identification of these conditions as they can provide in-
dications to maintainers where refactoring could perhaps be valuable. One such
aspect-oriented refactoring strategy is Inline Class within Aspect :

Problem: A small standalone class is used only by code within an aspect. This
implies that we need to identify a class that is not subclassified, and it is not
used as an attribute for other classes, and it does not receive messages from other
classes, but it is referenced in an advice body of only one aspect (Figure 3).

Along the same lines and following the strategies in [16], we have defined rules
for the following: Replace Implements with Declare Parents, Introduce Aspect
Protection, Replace Inter-type Method with Aspect Method, Extract Superaspect,
Pull Up Advice, Pull Up Declare Parents, Pull Up Inter-type Declaration, Pull
Up Pointcut and Push Down Pointcut.
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%% Obtain all methods introduced by an aspect for a supertype of a given type
findDeclaredMethod(AspectName,TypeName,SuperTypeName,MethodName):−

is aspect(AspectName), superType(SuperTypeName,TypeName),
introducedMethod(AspectName,SuperTypeName,MethodName, , , , ).

Fig. 2. Listing for rule findDeclaredMethod

%% Find candidate classes to be moved to an aspect
is CandidateForInline(Type):−

is class(Type), (get descendants(Type,L),size(L,0)),
not(attribute( ,Type, , , )), not(sendMessage( , , ,Type, , )),
(findall(Aspect,(is aspect(Aspect),used(Aspect, , ,Type, , )),List),
(size(List,1))).

Fig. 3. Listing for rule is CandidateForInline

Rules to Deploy Measurements. We have defined measurement rules in or-
der to extract information on the quality and the complexity of the program.
The complexity of a system depends on a number of measurable attributes such
as inheritance, coupling, cohesion, polymorphism, and application size. Some
of these attributes like coupling and cohesion are also applicable in an aspect-
oriented context. In [26] the authors define coupling as the degree of interde-
pendency among aspects and/or classes. One such metric based on coupling is
Attribute-Class Dependency: ”There is an attribute-class dependence between
aspect a and class c, if c is a type of an attribute of a. The number of attribute
class dependences from aspect a to the class c can formally be represented as
AtC(a, c) = | {x|x ∈ Aa(a) ∧ T (x) = c} |.” This factor can be calculated through
the rule in Figure 4.

attributeClassDependence(AspectName,ClassName):−
is aspect(AspectName),
is class(ClassName), attribute(AspectName, ,ClassName, , ).

attributeClassDependenceCount(AspectName,ClassName,Count):−
count(attributeClassDependence(AspectName,ClassName),Count).

Fig. 4. Listing for rule attributeClassDependence

Along the same lines, and following the metrics in [26], we have defined rules
to support Advice-Class Dependency, Intertype-Class Dependency, and Aspect-
Inheritance Dependency measures.
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7 Defining Dependency Relationships between Program
Elements

We have classified dependencies in aspect code into three groups: 1) Dependen-
cies between aspects (AO specific dependencies), 2) Dependencies between base
classes (OO specific dependencies), and 3) Dependencies between aspects and
classes (OO-AO dependencies).

Types of AO Specific Dependencies

Inheritance Dependency. This defines the dependency between a superaspect
and its subaspects. In AspectJ, an aspect cannot be extended unless it is defined
to be abstract. An abstract aspect needs to have abstract pointcuts which will
then be implemented by the concrete subaspects. Normally the advice blocks
related to the abstract pointcuts are defined in the superaspect. Detecting the
impact of superaspect deletion would not be particularly interesting because
this is immediately caught by compiler. However, it is possible that one would
delete the content of the superaspect. In the example in Figure 6, there is a
direct dependency between before advice of the Superaspect and the abstract
pointcut p defined in the Superaspect (and also to the concrete pointcut p
defined in Subaspect) as the advice knows which pointcut it is related (bound)
to. Therefore, deleting the abstract pointcut would lead to a compiler error.
On the other hand, a pointcut does not know about the advice blocks which
depend on it. This implies that deleting the advice blocks (related to the abstract
pointcut) in the superaspect would result in the program loosing the expected
functionality (which was supposed to be supported by before, after, or around
of the join point match). Therefore the intended behavior of the program will be
changed if this dependency is not realized before the deletion of advice blocks.
This dependency can be detected through the rule in Figure 5:

%% Obtain AdviceId in SuperAspect corresponding to given PointcutName in SubAspect
advicePointcutInheritenceDep(SuperAspect,SubAspect,AdviceId,PointcutName):−

is aspect(SuperAspect), is aspect(SubAspect),
pointcut(SuperAspect,PointcutName, , ,1),
pointcut(SubAspect,PointcutName, , ,0),
triggerAdvice(SuperAspect,AdviceId,adviceType, , ),
advicePointcutMap(SuperAspect,AdviceType,AdviceId,PointcutName).

Fig. 5. Listing for rule advicePointcutInheritenceDep

Precedence Dependency. Multiple advice blocks may apply to the same point-
cut, and the resolution order of the advice is based on rules on advice prece-
dence [22] under two cases:

1. Precedence rules among advice blocks from different aspects.
2. Precedence rules among advice blocks within the same aspect.
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S u p e r a s p e c t

+ a b s t r a c t  p o i n t c u t :  p ( )

+ b e f o r e ( ) :  p ( )

S u b a s p e c t

+ p o i n t c u t :  p ( )

Fig. 6. Inheritance Dependency

The precedence rules create an indirect dependency between advice blocks re-
lated to the same pointcut as the execution of advice blocks depends to the
precedence rules defined for the aspect(s) to which this advice blocks belong to.
The example in Figure 7 corresponds to the first case.

The three advice blocks defined in aspects AJ1 and AJ2 are applied to the
same join point call(public void C.m(..). According to the precedence rules
the before advice defined in aspect AJ1 has precedence over the two advice
blocks defined in aspect AJ2, and the before advice of AJ2 has precedence over
its after advice. Figure 7 shows the order of the execution of method C.m(int)
and the advice blocks. Neither of the advice blocks are aware of the precedence
defined in aspect AJ2. This implies that there would be no indication about this
dependency if one wants to change the before advice to after or around advice.
Another type of change can be adding a new advice block for the same join point
in aspect AJ1 or deleting either of the advice blocks.

public aspect AJ1 {
pointcut AJ1 P1(): call(public void C.m(. .));
before(): AJ1 P1() { // Display “Before from AJ1”}}

public aspect AJ2 {
declare precedence: AJ1, AJ2;
pointcut AJ2 P1(): call(public void C.m(. .));
before(): AJ2 P1() { // Display “Before from AJ2”
}
after(): AJ2 P1() { // Display “After from AJ2”
}}

public class C {
public void m(int i){

. . . }}

Output:
Before from AJ1
Before from AJ2
. . .

After from AJ2

Fig. 7. Listing for Precedence Dependency



Comprehension and Dependency Analysis of Aspect-Oriented Programs 45

For certain applications, the correct order of advice and method execution is
vital to preserve the semantics of the system. One such example is a concur-
rent system where a precondition to a service would dictate that authentication
would have to be evaluated before synchronization which in turn would have to
be evaluated before scheduling. Precedence rules guarantee the correct order, but
any changes to the precedence or to the advice should be performed with atten-
tion to the dependency that the declare precedence creates. On the Eclipse
IDE [1] it is possible to obtain the order of advice execution over a method, but it
is tedious to detect this dependency. We can detect the precedence dependency
through the following strategy:

Precedence dependency between advice blocks of the same aspect. For
each pointcut defined in an aspect we need to identify a list of its related advice
blocks. If the list contains more than one advice, then according to the precedence
rules there would be an order of execution for these advice blocks which implies
a dependency (Figure 8).

%% Obtain ListofAdvice bound to PointcutName in AspectName
advicePrecedenceDepPerAspect(AspectName,PointcutName,ListofAdvice)−:

findall(AdviceId,advicePointcutMap(AspectName, ,AdviceId,PointcutName),
ListofAdvice),

size(ListofAdvice,N), N>0.

Fig. 8. Listing for rule advicePrecedenceDepPerAspect

We also have defined rules to identify precedence dependencies among advice
blocks from different aspects. For the OO-AO dependencies, we have adopted the
dependencies defined in the literature. Due to space limitation, only a list of such
dependencies are provided: Pointcut-Class Dependency, Pointcut-Method Depen-
dency, Advice-Class Dependency, Intertype-Class Dependency, and Method-Class
Dependency.

8 Case Study

As a proof of concept, we deployed our method over a medium-scale service-
oriented system which we developed. The system allows possibly multiple con-
sumers and retailers to have access to a communications hub which controls and
coordinates their interactions in order to implement reverse auctions. In this pro-
tocol one consumer may place a request to purchase a product. After a collection
of sellers is iterated over to find the best price, a message is sent back to the client
informing them about the winner and asking for confirmation to place an order.
The core functionality is provided by the definitions of classes Infomediator and
ReverseAuction (defining the hub and protocol respectively - not shown). For
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public abstract aspect ObserverProtocol {
protected interface Subject {

public void addObserver(Observer o);
public void removeObserver(Observer o);
private List observers = new LinkedList();}

private synchronized void Subject.notifyObserver(PotentialOrder po){. . .}
public interface Observer {

public void notifyOfchange(Subject s, PotentialOrder po);}
protected abstract pointcut subjectChange(Subject s, PotentialOrder po);
after(Subject s, PotentialOrder po): subjectChange(s, po){. . .}
protected abstract pointcut findObservers(Infomediator info,

Subject s, String service, String rule);
after(Infomediator info, Subject s, String service,String rule):

findObservers(info, s, service, rule){. .}}

privileged public aspect CoordinateObserver extends ObserverProtocol {
declare parents : Retailer implements Observer;
declare parents : Customer implements Subject;
private int Retailer.NumberSold = 0;
public void Retailer.notifyOfchange(Subject s, PotentialOrder po)

{NumberSold++;. . .}
protected pointcut subjectChange(Subject s, PotentialOrder po):

execution(* Customer.buy(PotentialOrder))
&& target(s) && args(po);

protected pointcut findObservers(Infomediator info, Subject customer,
String service, String rule):

execution (* Infomediator.initiateReverseAuction(Customer,
String,
String))

&& target(info) && args(customer, service, rule);}

Fig. 9. Listing for aspects ObserverProtocol and CoordinateObserver

each reverse auction request, a potential order is created and associated with the
consumer and the winner of the reverse auction. The system routes the auction
result back to the consumer and informs the winner using the callback pattern,
implemented in Java RMI. Supported semantics and other technical services
(such as the subject-observer protocol, contract checking, authentication, syn-
chronization, transaction logging, throughput and persistence) are provided by
a number of aspect definitions. One notable example is the aspectual behavior of
the aspect ObserverProtocol: This is implemented as an abstract aspect which
defines the Observer design pattern, where retailers are viewed as observers and
customers are viewed as subjects. The definition of CoordinateObserver ex-
tends ObserverProtocol and provides concrete pointcuts. A list of all retailers
that participate in the auction and provide the services that a customer wants is
created when a reverse auction is initiated. If the customer eventually purchases
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aspect(coordinateObserver,public).
extends(coordinateObserver,observerProtocol).
privilegedAspect(coordinateObserver).
declareParent(coordinateObserver,retailer,observer).
declareParent(coordinateObserver,customer,subject).
introducedAtt(coordinateObserver,retailer,numberSold,int,private,0).
introducedMethod(coordinateObserver,retailer,notifyOfchange,public,

[subject,potentialOrder],0).
pointcut(coordinateObserver,subjectChange,[subject,potentialOrder],protected,0).
pointcutdesig(1,coordinateObserver,subjectChange,execution,

[public, ,customer,buy,[potentialOrder]]).
pointcutdesig(2,coordinateObserver,subjectChange,target,[subject]).
pointcutdesig(3,coordinateObserver,subjectChange,args,[potentialOrder]).
pointcut(coordinateObserver,findObservers,

[infomediator,subject,string, string],protected,0).
. . .

Fig. 10. Listing for aspect coordinateObserver transformed to Prolog facts

findDeclaredMethod(Aspect,customer,SuperType,Method).

Result:
Aspect = ObserverProtocol, SuperType = Subject, Method = addObserver;
Aspect = ObserverProtocol, SuperType = Subject, Method = removeObserver;
Aspect = ObserverProtocol, SuperType = Subject, Method = notifyObserver;

Fig. 11. Listing for the result of rule findDeclaredMethod

the service from the winner retailer of the auction, the corresponding retailer
will be notified with the information about the number of items sold. A partial
view of the transformation of aspect coordinateObserver to Prolog facts is
provided in Figure 10. Here we want to calculate Declared Method in Inheritance
Hierarchy for class Customer. Manually, this task would be tedious because one
needs to check the body of all aspect definitions in the system in order to obtain
this information. According to Section 6 we need to run the following query (the
result of which is shown in Figure 11): findDeclaredMethod(Aspect,customer,
SuperType, Method).

Automation and tool support: We have developed a tool (called AJsurf) as
an Eclipse plug-in that reads the source code and creates a database composed of
a collection of Prolog facts. The transformation process from source code to facts
is transparent to the end-users. The tool allows end-users to execute statements
in form of queries. Moreover, the tool supports the execution of predefined,
parameterized or direct queries (in the form of Prolog goals).
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9 Related Work

There is currently tool support to ease the comprehension process of both proce-
dural [24], and object-oriented programs. For the latter, tools can be categorized
according to the type of transformation and the artifacts they provide:

– Reverse engineering of source code to the design model (such as Poseidon-
UML [4], and Eclipse-Omondo [3]).

– Reverse engineering of source code to graphs (data dependency graph, con-
trol dependency graph, formal concept analysis lattice).

– Knowledge extraction (facts and rules) from the source code to produce
structural relations of elements which serve as a knowledge base over which
queries can be executed.

For aspect-oriented systems, tool support can be categorized in three groups
[18]: 1) Text-based tools: They provide different views such as editors, outline,
and package explorer. 2) Visualization-based tools: They create aspectual re-
lationship views (e.g calls, advice, advised-by) between aspects and classes.
3) Query-based tools: They can be considered as a subset of text-based or
visualization-based tools as they provide the result of a query either in text
or in a visualization view.

In [8] the authors present a reverse engineering tool called Ciao. Ciao is a
graphical navigator tool which allows users to formulate queries, generate a
graph, interact with graph nodes, and to perform various graph analysis tasks in
order to extract information from a software repository. The software repository
is a collection of source code artifacts with all related documents, configuration
management files, modification requests and manuals together with an associated
database that describes the components and relationship among them. CQL is
used as the query language associated with the repository. Ciao supports repos-
itories which have AERO style architecture (Attributes, Entity, Relationship,
and Operator), and it has been designed for C and C++ program database and
program difference database. Each node in the navigation graph corresponds to
a query that generates a specific view on the system. The edges of the navigation
graph represent historic dependencies between query views. However, the nodes
in the navigation graph only indicate the type of query executed and for each
query executed the corresponding graph is shown. To reconstruct the structural
relationships that connect different queries on a path, one must compare their
corresponding views.

In [20] the authors, model static and dynamic information of an object-
oriented system in term of Prolog facts. Declarative queries are defined to allow
filtering of the collected data and defining new queries. By running these queries,
maintainers can have a view of the system at a higher level of abstractions for a
better understanding.

SOUL is a logic meta-language based on Prolog which is implemented in
Visual Work Smalltalk [25]. It provides a declarative framework that allows
reasoning about the structure of Smalltalk programs based on the parse tree
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representation. This makes facts and rules to be independent from a particular
base language. Moreover, facts and rules are collected based on basic relation-
ships in the object-oriented system. High level relationships like design patterns
can be expressed and then implemented in code. The declarative framework of
SOUL consists of two layers of rules: basic layer and advanced layer. The basic
layer includes representational and structural rules. The representational rules
define object-oriented elements (classes, methods, and statements) in the logical
meta-language using Smalltalk terms. These rules are the only parts of SOUL
which are language base dependent, and the rest are language independent. Us-
ing Smalltalk terms facilitates the translation of object-oriented classes to logical
facts, and only the relationships between the classes are formulated in rules on
the meta-language. The structural rules are defined over the representational
rules and formulate some other relationship in Smalltalk systems. Using these
rules one can run basic queries on the system.

Lost [19] is an Eclipse plug-in query tool developed for code navigation and
browsing for AspectJ programs, deploying a variant of the Object Query Lan-
guage (OQL), developed by the authors. For its query language, end-users need
to write the queries in the query editor area and an instance error feedback fea-
ture of the tool allows users to correct the errors while writing queries. Users of
Lost need to know the query language as there is no predefined queries available.
This tool can be also used for navigation of Java programs. Like other Eclipse
plug-ins, this tool deploys Eclipse IDE features like syntax highlighting, and
auto-compilation.

In [23] the author implements a Java browser called JQuery as an Eclipse
plug-in. The tool creates a database from the source code and provides an in-
terface for the end-users to run queries. The query language used for this tool
is a logic programming language called TyRuBa. Using this tool, users can run
default (predefined) queries to extract information about their Java programs.
Moreover, the tool allows users to write their own queries in order to obtain more
information about the given Java code. One of the strengths of this tool is the
ability to explore complex combinations of relationships through the declarative
configuration interface. Users who only need the basic features do not need to
know TyRuBa. However, users would have to know TyRuBa should they want
to have more complex queries, as they would need to edit the existed queries or
write new ones.

JTransformer [2] is a Prolog-based query and transformation engine for stor-
ing, analyzing and transforming fact-bases of Java source code. JTransformer
creates an AST representation of a Java project, including the complete AST of
method bodies as a Prolog database. Using JTransformer, developers can run
powerful queries and transformations on the logic fact-base.

CodeQuest [11] is a source code querying tool which uses safe Datalog as its
query language, mapping Datalog queries to a relational database system.

In [9] the authors present a prototype tool for analysis and performance op-
timization of Java programs called DeepWeaver-1. This tool is an extension
of the abc AspectJ compiler [5] which has a declarative style query language,
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(Prolog/Datalog-like query language) to analyze and transform code within and
across methods.

In [6] the authors, describe the representation of aspects in terms of a logic
programming language, albeit for a different purpose.

Eclipse IDE [1] provides different editors and views. Views are visual compo-
nents allowing navigation through a hierarchy of information. Editors are com-
ponents that allow editing or browsing a file. Views and editors provide different
types of representation of the resources for the developers. AspectJ Development
Tools (AJDT) provides support for aspect-oriented software development using
AspectJ within the Eclipse IDE.

10 Evaluation

From the query language perspective, there have been two common approaches:
The first (implemented by Lost) adopts predefined predicates and combines them
using relational calculus. In this approach the predicates are stored in named
sets and the relational calculus query is translated to common relational alge-
bra operations. The advantage of this approach is the speed and efficiency of
the algorithm and the ease of transporting to a persistent storage mechanism.
The disadvantage is the limitation of its expressive power. The second approach
(implemented by JQuery) adopts a resolution inference mechanism to find the
values of variables as they are resolved during unification, while having more
expressiveness and power. By defining a query with some additional rules, the
end-user can gain the power of a full programming language. There are also dis-
advantages to this approach including 1) the possibility of running into infinite
loops in case of badly written queries and 2) taking a lot of time and memory
because of the nature of the reasoning algorithm. For the purpose of our investi-
gation there are a number of tasks, which require logical inference. Furthermore,
there are a number of recursive rules like the ones about inheritance hierarchies
and call graph traversal. The recursive queries on tree structures are not part of
standard have relational query languages like SQL and OQL, even though there
exist some vendor specific extensions to support these queries. We utilized the
logic based querying approach. However, for highly complex queries, one would
have to be familiar with the query language (Prolog). In addition, there are
strategies (for example, finding all the methods defined for a type through inter
type declaration) or measurements, that can be tedious to compute manually or
with other approaches, and our approach supports an environment to do that
automatically.

11 Conclusion and Recommendations

In this paper we discussed an approach to support declarative (static) analysis of
aspect-oriented programs, adopting AspectJ as a representative technology aim-
ing at improving comprehension. Our approach is based on the transformation
of source code into a set of facts and data, provided as a Prolog database over
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which queries can be executed. Declarative analysis allows us to extract complex
information through its rich and expressive syntax. The type of knowledge pro-
vided through these queries is categorized in three main groups, such as those
which address bad smells (identifying problematic situations where refactoring
may be needed), those which address measurements (providing the degree of
complexity of the system through metrics) and general (providing static infor-
mation about the system). We have automated our approach and integrated all
activities in a tool provided as an Eclipse plug-in. End-users can execute prede-
fined, parameterized or direct queries in the form of Prolog goals. In the future
we plan to extend our approach to support change impact analysis.
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Abstract. When BDDs are used for propagation in a constraint solver
with nogood recording, it is necessary to find a small subset of a given
set of variable assignments that is enough for a BDD to imply a new
variable assignment. We show that the task of finding such a minimum
subset is NP-complete by reduction from the hitting set problem. We
present a new algorithm for finding such a minimal subset, which runs in
time linear in the size of the BDD representation. In our experiments, the
new method is up to ten times faster than the previous method, thereby
reducing the solution time by even more than 80%. Due to linear time
complexity the new method is able to scale well.

1 Introduction

Many useful functions have compact Binary decision diagram (BDD) [1] repre-
sentations. Hence, the BDDs has attracted attention as a constraint representa-
tion [2,3,4,5,6,7,8]. The BDDs have been used in many applications, including:
verification, configuration and fault-tree analysis.

The nogood recording [9,10] is a technique in constraint solvers to find a subset
of the variable assignments made upto a dead-end in a search tree, such that the
found subset could independently lead to dead-ends. By recording such subsets
called nogoods and by preventing similar assignment patterns, the search effort
can be drastically reduced.

For a given set of variable assignments X , if the propagation of X in a con-
straint c implies a variable assignment (v := a), denoted X ∧ c ⇒ (v := a), then
a reason R is a subset of X , such that R ∧ c ⇒ (v := a). Finding small rea-
sons is essential for nogood recording. The nogood recording plays a major part
in the successful SAT solvers. The adoption of the nogood recording in general
constraint solvers requires efficient methods for finding small reasons in every
important constraint representation, including BDDs.

This paper focuses on finding small reasons in BDDs. We show that the task
of finding a minimum-sized reason in BDDs is NP-complete by reduction from
the hitting set problem. We also present a new algorithm for finding minimal-
sized reasons, which runs in time linear in the size of the BDD representation.
We then empirically demonstrate the usefulness of the new algorithm over a
previous method. In our experiments, the new method scales better, and is upto
10 times faster than the previous one.
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2 Definitions

2.1 The Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) instance is a triple (V, D, C), where V
is a set of variables, D is a set of finite domains, one domain di ∈ D for each
variable vi ∈ V , and C is a set of constraints. Each constraint ci ∈ C is a pair
of the form (si, ri), where si ⊆ V and ri is a relation over the variables in si.

An assignment X is a set like {vx1
:= ax1

, vx2
:= ax2

, . . . , vx|X| := ax|X|}. The
variable assignment (vxi := axi) fixes the value of vxi to axi , where axi ∈ dxi .
An assignment X is full if |X | = |V |, partial otherwise. A solution to a CSP is
a full assignment S, such that for any constraint (si, ri) ∈ C, the assignment S
restricted to si belongs to the relation ri, i.e., S|si

∈ ri. For a given assignment X ,
a constraint ci implies a variable assignment (v := a), denoted X∧ci ⇒ (v := a),
if every tuple in the relation ri containing X|si

also contains (v := a).

2.2 The Binary Decision Diagrams

A reduced ordered binary decision diagram (BDD) [1] is a directed acyclic graph
with two terminal nodes, one marked with 1 (true) and the other with 0 (false).
The Figure 2 (a) and Figure 3 (a) show two example BDDs.

Each non-terminal node n is associated with a Boolean variable var(n). Each
node n has two outgoing edges, one dashed and another solid. The occurrence
of variables in any path has to obey a linear order. Also, isomorphic subgraphs
will be merged together, and a node n with both its outgoing edges reaching the
same node nc will be removed with all the incoming edges of n made to reach
nc directly. A BDD will be represented by its root node. The size of a BDD b,
|b|, is the number of non-terminal nodes. For a given BDD, the term solid(n1)
evaluates to n2 iff (n1, n2) is a solid edge in the BDD. Similarly, dashed(n1)
evaluates to n2 iff (n1, n2) is a dashed edge.

The variable assignment corresponding to an edge (n1, n2) is (var(n1) := a),
where a = true iff n2 = solid(n1). Consider a path p =< n1, n2, . . . , nl > in a
BDD with nl = 1, from a node n1 to the 1-terminal. The assignment Xp cor-
responding to the path p is Xp = {(var(ni) := a) | 1 ≤ i ≤ (l − 1), (ni+1 =
solid(ni)) ⇔ (a = true)}. The Xp is the set of the variable assignments corre-
sponding to each edge in the path. The path p is a solution path if n1 = b and
nl = 1, i.,e, starts from the root node.

A BDD b represents a Boolean function f iff for any solution S to f , there
exists a solution path p in b, such that Xp ⊆ S. We may denote the function
represented by a BDD b by b itself. If S is a solution of f , we may specify S ∈ f .
The set of solutions Sp corresponding to a solution path p is Sp = {S | Xp ⊆
S, S ∈ b}. We denote (v := a) ∈ p to specify that there exists a S ∈ Sp such
that (v := a) ∈ S. Similarly, we denote X ∈ p if there exists a S ∈ Sp such that
X ⊆ S. Note, (v := a) ∈ p mentions that either there occurs an edge (ni, ni+1)
in p whose corresponding assignment is (v := a), or there is no node ni in the
path p such that var(ni) = v.
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Although a BDD representing a Boolean function could be exponential in
the number of variables in the function, for several practically useful functions
the equivalent BDDs are of small size. Hence, the BDDs have found widespread
usage in several applications.

2.3 Representing Constraints Using BDDs

To simplify the presentation, we assume that all the variables in a given CSP have
Boolean domain. Given a general CSP, we can encode it using Boolean variables.
For example, using the log-encoding method, a non-Boolean variable v ∈ V with
domain d can be substituted by �log |d|	 Boolean variables, matching each value
in d to a unique assignment of the introduced �log |d|	 Boolean variables.

Each constraint ci ∈ C is hence a Boolean function defined over si, with the
function mapping an assignment for si to true iff the assignment belongs to ri.

For X = {vx1
:= ax1

, vx2
:= ax2

, . . . , vx|X| := ax|X|}, the Boolean function
obtained by the conjunction of the variable assignments in X is also denoted
by X , i.e., X =

∧
1≤i≤|X|(vxi = axi), which will be clear from the context.

Given a CSP with several constraints, some of the constraints’ function might
be represented by compact BDDs. The BDDs of some of the constraints might
result in obtaining helpful inferences to speed-up the constraint solver. Hence,
the BDDs has attracted attention as a constraint representation [2,3,4,5,6,7,8].

2.4 The Nogoods

A nogood [9,10] of a CSP is a partial assignment N , such that for any solution
S of the CSP, N � S. Hence, a nogood N cannot be part of any solution to the
CSP. In a typical constraint solver, an initial empty assignment X = {} will be
extended by both the branching decisions and the variable assignments implied
by the decisions, and the partial assignment X will be reduced by the backtrack-
ing steps. The extensions and reductions will go on until either X becomes a
solution or all possible assignments are exhausted.

A backtracking step occurs when the assignment X cannot be extended to a
solution. The nogood recording, if implemented in a constraint solver, will be in-
voked just before each backtracking step. The nogood recording involves finding
and storing a subset N of the partial assignment X, such that N is a nogood.
Such nogoods can be used to prevent some bad branching choices in the future
and hence speed-up the solution process. This paper focuses on a building block
of nogood recording and can be understood independently. We refer the interested
reader to [9,10,11,12,7] for details on the whole nogood recording process.

2.5 The Reasons for Variable Assignment

A building block of nogood recording is to find a small subset R of an assignment
X that is a reason for the implication of a variable. If X ∧ c ⇒ (v := a), then the
reasonR is a subset of X , R ⊆ X , such that R∧c ⇒ (v := a). Heuristically, smaller
sized reasons are preferred, since that would lead to smaller nogoods resulting in
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better pruning. We show that when a BDD represents a constraint, the task of
finding a minimum sized reason is NP-complete. We also show that a minimal
sized reason can be found in time linear in the size of the BDD.

Given a BDD b, an assignment X and (v := a) such that X ∧ b ⇒ (v := a),
let Rall = { R | R ⊆ X, R∧b ⇒ (v := a)}. The set Rall contains all the reasons.

Now, we formally define the problems for finding minimum and minimal rea-
sons in BDDs. We specify the decision version for the minimum problem.

MINIMUM BDD-REASON :

Input: A BDD b, an assignment X , and (v := a), such that X ∧ b ⇒ (v := a)
and a positive integer K.
Output: Yes, if there is a R, such that R ∈ Rall, and |R| ≤ K. No, otherwise.

MINIMAL BDD-REASON :

Input: A BDD b, an assignment X , and (v := a), such that X ∧ b ⇒ (v := a).
Output: R, such that R ∈ Rall, and ∀R′ ∈ Rall. if R′ ⊆ R then R = R′.

3 The MINIMUM BDD-REASON Is Intractable

We prove that MINIMUM BDD-REASON is NP-complete by using reduction
from the HITTING SET problem.

HITTING SET [13]:

Input: A collection Q of subsets of a finite set P , and a positive integer K ≤ |P |.
Output: Yes, if there is a set P ′ with |P ′| ≤ K such that P ′ contains at least
one element from each subset in Q. No, otherwise.

Lemma 1. A relation r with q tuples, defined over k Boolean variables, can be
represented by a BDD of size at most qk nodes.

Proof. If the BDD b represents the relation r, then there will be exactly q solu-
tions in b, one for each tuple in r. Since representing each solution by b requires
at most k nodes, there will be at most qk non-terminal nodes in b. ��

Lemma 2. Given a BDD m of a function over the variables in {b1, b2, . . . , bk},
using the order b1 < b2 < . . . < bk, if m ⇒ (bk := false) then the size of the
BDD m′ representing m ∨ (bk = true) is |m|.

Proof. Since the variable bk is at the end of the variable order, given m we can
obtain m′ by just the following two steps.

1. Add a new node n′ with var(n′) = bk. The dashed edge of n′ will reach the
0-terminal and the solid edge will reach the 1-terminal. The n′ represents
the function (bk = true). Now, for each dashed (resp. solid) edge of the form
(n, 0) for any node n, where n �= n′, replace the dashed (resp. solid) edge
(n, 0) with a new dashed (resp. solid) edge (n, n′).
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2. There will be only one n′′ such that var(n′′) = bk and n′′ �= n′, representing
the function (bk = false), otherwise m ⇒ (bk := false) is not possible.
Remove n′′ and make the incoming edges of n′′ to reach the 1-terminal.

Exactly one node n′ is added and one node n′′ is removed. Hence, |m′| = |m|. ��

Theorem 1. The MINIMUM BDD-REASON is NP-complete.

Proof. The problem is in NP, as we can quickly check the correctness of any R.
Now, we reduce the HITTING SET problem into MINIMUM BDD-REASON.

Let the set P = {p1, p2, . . . , p|P |}, Q = {q1, q2, . . . , q|Q|} with qi ⊆ P and an
integer K define an instance of the HITTING SET problem.

b1 b2 . . . b|P | b|P |+1

a11 a12 . . . a1|P | false
a21 a22 . . . a2|P | false
. . . . . . .
. . . . . . .
. . . . . . .

a|Q|1 a|Q|2 . . . a|Q||P | false

Fig. 1. The relation r

Let r be a relation defined over the
|P | + 1 Boolean variables in the set
{b1, b2, . . . , b|P |+1}. The Figure 1 shows
the structure of the relation r. There will
be |Q| rows in r. The row i of r will cor-
respond to the qi ∈ Q. Let the Boolean
term aij be false iff pj ∈ qi.

The row i of the relation r will contain
the tuple (ai1, ai2, . . . , ai|P |, false). Let
the BDD br represents the function of r,
using the order b1 < b2 < . . . < b|P |+1.

Let the BDD b′ represents the function (b|P |+1 = true). The b′ is trivial with
just one non-terminal node. Let the BDD b represents br ∨ b′, i.e., b = br ∨ b′.
Let X = {b1 := true, b2 := true, . . . , b|P | := true}.

By the definition of r, in each solution S of br the b|P |+1 takes false value.
Also, if S is a solution of b′, then b|P |+1 takes true value in S. Due to the different
values for b|P |+1, the solutions of br and b′ are disjoint. So for any S ∈ b, either
S ∈ br or S ∈ b′, but not both.

For any qi ∈ Q, |qi| ≥ 1, therefore, for each row i of r there exists a pj ∈ qi

such that aij = false. So, for any S ∈ b, S ∈ br implies that there exists an i,
1 ≤ i ≤ |P |, such that aij = false, and hence bi takes false value in S. As, for
1 ≤ i ≤ |P |, bi takes true in X , X ∧ br is false. So, X ∧ b = X ∧ b′ and since
b′ = (b|P |+1 = true), X ∧ b ⇒ (b|P |+1 := true).

So, the assignment X , the BDD b, the variable assignment (b|P |+1 := true)
and the integer K define an instance of the MINIMUM BDD-REASON problem.

So given a HITTING SET instance (P, Q, K), we can obtain a corresponding
instance of MINIMUM BDD-REASON defined by (X, b, (b|P |+1 := true), K).

We now have to show that given (P, Q, K), we can obtain (X, b, (b|P |+1 :=
true), K) in polytime and also that the output to (X, b, (b|P |+1 := true), K) is
Yes iff the output for (P, Q, K) is Yes.

To show that we can obtain (X, b, (b|P |+1 := true), K) in polytime, we just
have to show that we can obtain b in polytime. By Lemma 1, |br| is bounded by
|Q|(|P | + 1). Also, by Lemma 2, |b| which is equivalent to br ∨ (b|P |+1 = true) is
at most |br|. Hence, we can obtain (X, b, (b|P |+1 := true), K) in polytime.
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Now, we just have to show that the instance (P, Q, K) has the Yes output iff
the instance (X, b, (b|P |+1 := true), K) has the Yes output.

(⇒): Let P ′ = {pt1 , pt2 , . . . , pt|P ′|}, where 1 ≤ ti ≤ |P |, be an answer for the Yes
output of (P, Q, K). Then consider R to be {bt1 := true, bt2 := true, . . . , bt|P ′| :=
true}. We show that R ∧ b ⇒ (b|P |+1 := true), which proves the (⇒) case.

Since P ′ is a Yes answer, by definition, for each row i of r, there will be a
j, such that pj ∈ P ′ and (aij = false). So for each row i, there will be a j,
such that (aij = false) and bj takes true value in R. Hence, the solution S ∈ br

corresponding to any row i cannot be a solution of R∧br. So, R∧br = false, which
implies R∧ b = R∧ (br ∨ b′) = ((R∧ br)∨ (R∧ b′)) = ((false)∨ (R∧ b′)) = R∧ b′.
Since, (R∧ b′) ⇒ (b|P |+1 := true), R∧ b ⇒ (b|P |+1 := true). Hence the (⇒) case.

(⇐): Let R = {br1
:= true, br2

:= true, . . . , br|R| := true} be a solution for the
Yes answer of (X, b, (b|P |+1 := true), K). Let P ′ = {pr1

, pr2
, . . . , pr|R|}. We have

to show that P ′ has at least one element pj ∈ qi for each qi ∈ Q.
Since R ∧ b ⇒ (b|P |+1 := true), b′ ⇒ (b|P |+1 := true) and br ⇒ (b|P |+1 :=

false), R ∧ br = false. So, there is no solution S such that S ∈ (R ∧ br).
For each row i of the relation r there exists a j such that (aij = false) and

(bj := true) ∈ R. Otherwise, i.e., if there does not exist such a j for a row i
then, the solution S corresponding to the row i belongs to (R ∧ br), which is a
contradiction to R ∧ br = false.

So, for each row i, there exists a j such that (aij = false) and (bj := true) ∈ R,
hence, pj ∈ qi and pj ∈ P ′, which proves the (⇐) case. ��

4 A Linear-Time Algorithm for MINIMAL BDD-REASON

A dashed edge (n1, n2) in a BDD b is a conflicting edge with respect to an
assignment X if (var(n1) := true) ∈ X . Similarly, a solid edge (n1, n2) in b is a
conflicting edge with respect to X if (var(n1) := false) ∈ X .

Suppose X∧b ⇒ (v := a), then the removal of all the conflicting edges w.r.t X
in b will result in removing each solution path p with (v := ¬a) ∈ p. Otherwise,
there will be a p such that X ∈ p and (v := ¬a) ∈ p, which is a contradiction to
X ∧ b ⇒ (v := a).

Example 1. Consider the BDD b in the Figure 2 (a) and the assignment X =
{v := true, x := true, z := false}, then X ∧ b ⇒ (y := true). Hence, the removal
of the conflicting edges, as shown in the Figure 2 (b), removes every solution
path p with (y := false) ∈ p.

Example 2. Consider the BDD b in the Figure 3 (a) and the assignment X =
{v := false, w := true, y := false}, then X ∧ b ⇒ (x := false). Hence, the removal
of the conflicting edges, as shown in the Figure 3 (b), removes every solution
path p with (x := true) ∈ p.

Suppose X ∧ b ⇒ (v := a), a conflicting edge (n1, n2) is a frontier edge if there
exists a solution path p using (n1, n2), such that (v := ¬a) ∈ p, and the subpath
of p from n2 to the 1-terminal does not use any conflicting edge.
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Fig. 2. Example 1, X ∧ b ⇒ (y := true). (a) The BDD b, (b) The BDD b without the
conflicting edges w.r.t X, (c) The BDD b without the frontier edges.
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Fig. 3. Example 2, X ∧ b ⇒ (x := false). (a) The BDD b, (b) The BDD b without the
conflicting edges w.r.t X, (c) The BDD b without the frontier edges, (d) The BDD b
without the conflicting edges w.r.t R = {(v := false), (w := true)}.

In any solution path p with (v := ¬a) ∈ p, the frontier edge is the conflicting
edge nearest to the 1-terminal. Hence, removal of all the frontier edges will result
in removing every solution path with (v := ¬a). Otherwise, there will exist a
solution path p without using any frontier edge, such that (v := ¬a) ∈ p, which
is a contradiction to X ∧ b ⇒ (v := a). The Figure 2 (c) and Figure 3 (c)
show the BDDs of the two examples without just the frontier edges. In both the
cases, the removal of the frontier edges removes every solution path p with the
corresponding variable assignment.

The idea of our minimal reason algorithm is to first find the frontier edges.
Then, to find a subset of the frontier edges such that the inclusion of the vari-
able assignments conflicting the subset in R will ensure that R∧b ⇒ (v := a) and
R is minimal.

In the Example 1, as in the Figure 2 (c), all the frontier edges conflict with just
(x := true). Hence, the set R = {(x := true)} is such that R ∧ b ⇒ (y := true).

In the Example 2, as in the Figure 3 (c), each assignment in X has a frontier
edge. There is only one solution path with a frontier edge of (y := false). Also,
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in that path there is a conflicting edge of (w := true). Hence, the inclusion of
(w := true) in R will make the frontier edge of (y := false) redundant. So, if
(w := true) ∈ R then (y := false) need not belong to R. This results in a minimal
reason R = {(v =: false), (w := true)}. The Figure 3 (d) shows the BDD b for the
Example 2 after removal of the conflicting edges w.r.t. R = {(v := false),(w :=
true)}. It can be observed that all the solution paths with (x := true) are removed
in the figure. Also, the set R is minimal, since for any R′ � R, there exists a
solution path p in the BDD b, with both R′ ∈ p and (x := true) ∈ p.

The idea of our algorithm is hence to find the frontier edges first. Then to look
at the frontier edges, in the order of their variables, and decide on the inclusion
of a matching variable assignment in R if it is necessary to remove a solution
path.

The Figure 4 presents the MinimalReason procedure. The MinimalReason
uses the FindFrontier procedure in Figure 5 to mark the nodes with an outgoing
frontier edge. The assumptions made in presenting the procedures are:

1. The BDD b represents a function defined over the k Boolean variables in the
set {b1, b2, . . . , bk}, using the variable order b1 < b2 < . . . < bk. We assume
X ∧ b ⇒ (v := a) where v = bi for an i, 1 ≤ i ≤ k.

2. The visited, reach1, and frontier are three Boolean arrays, indexed by the
nodes in the BDD b. The entries in the three arrays are initially false.

3. The reachedSet is an array of sets indexed by the variables in the BDD. The
entries in the reachedSet array are initially empty sets.

4. The set VX denotes the variables in X , i.e., VX := {bi | (bi := a′) ∈ X}.

The procedure FindFrontier visits all the nodes in the BDD b in a depth first
manner and if an edge (n1, n2) is a frontier edge, then sets the entry frontier[n1]
to true. The procedure uses the visited array to make sure it visits a node only
once. At the end of the procedure, the entry reach1[n] is true iff there exists
a path from n to the 1-terminal without using a conflicting edge or an edge
corresponding to (v := a).

The lines 1-2 of the MinimalReason procedure appropriately initializes the
reach1 and visited entries for the two terminal nodes and makes a call to Find-
Frontier. The lines 1-3 of the FindFrontier procedure ensure that a node is vis-
ited only once and the child nodes are processed first. In the case (var(n) = v) at
line-4, based on the value of ’a’ the procedure appropriately sets reach1[n], ignor-
ing the edge corresponding to (v := a). Since we are just interested in removing
solution paths with (v := ¬a), we can ignore the edge corresponding to (v := a).
In the case (var(n) /∈ VX) at line-9, the procedure sets the reach1[n] to true if any
of the child nodes of n has true entry in reach1. The lines 12-13 correspond to the
case where var(n) ∈ VX , in which an outgoing edge of the node n could be a fron-
tier edge. Based on the value var(n) takes in X and the reach1 entries of the child
nodes, the procedure decides whether frontier[n] is true or not. Note, the value
frontier[n] becomes true if an outgoing edge of the node n is a frontier edge.

At the end of the first recursive call made to FindFrontier at the line-2 of
MinimalReason, all the nodes with an outgoing frontier edge are identified by
the entries in the frontier array. At the line-3 of the MinimalReason procedure,
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MinimalReason (X, b, (v := a))
1 : reach1[0] := false ; reach1[1] := true ; visited[0] := true ; visited[1] := true
2 : FindFrontier(b)
3 : reachedSet[var(b)] := {b} ; R = { } ; T := {0, 1} // T - terminal nodes
4 : for i := 1 to k // i.e., for each variable bi

5 : foundFrontier := false
6 : for each n ∈ reachedSet[bi]
7 : if (frontier[n]) foundFrontier := true
8 : if (foundFrontier)
9 : if ((bi := true) ∈ X)
10: R.Add((bi := true))
11: for each n ∈ reachedSet[bi]
12: if (solid(n) /∈ T ) reachedSet[var(solid(n))].Add(solid(n))
13: else // i.e., ((bi := false) ∈ X)
14: R.Add((bi := false))
15: for each n ∈ reachedSet[bi]
16: if (dashed(n) /∈ T ) reachedSet[var(dashed(n))].Add(dashed(n))
17: else // i.e., (foundFrontier = false)
18: for each n ∈ reachedSet[bi]
19: if (solid(n) /∈ T ) reachedSet[var(solid(n))].Add(solid(n))
20: if (dashed(n) /∈ T ) reachedSet[var(dashed(n))].Add(dashed(n))
21: return R

Fig. 4. The MinimalReason Procedure

FindFrontier (n)
1 : visited[n] := true
2 : if (¬visited[solid(n)]) FindFrontier(solid(n))
3 : if (¬visited[dashed(n)]) FindFrontier(dashed(n))
4 : if (var(n) = v)
5 : if (a)
6 : if (reach1[dashed(n)]) reach1[n] := true
7 : else // i.e., (a = false)
8 : if (reach1[solid(n)]) reach1[n] := true
9 : else if (var(n) /∈ VX)
10: if (reach1[dashed(n)] ∨ reach1[solid(n)]) reach1[n] := true
11: else // i.e., var(n) ∈ VX

12: if((var(n) := true) ∈ X)
13: if (reach1[dashed(n)]) frontier[n] := true
14: if (reach1[solid(n)]) reach1[n] := true
15: else
16: if (reach1[solid(n)]) frontier[n] := true
17: if (reach1[dashed(n)]) reach1[n] := true

Fig. 5. The FindFrontier Procedure

the set reachedSet[var(b)] is assigned a set with just the root node. At the end
of MinimalReason, if a node n belongs to the set reachedSet[var[n]], then it
means the node n could be reached from the root node b without using any
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conflicting edge w.r.t R, where R is the output minimal reason. At the line-3 of
the procedure, the set R is initialized to be empty and T is initialized to a set
with both the terminal nodes. At the line-4, the procedure starts to loop over
each variable in the BDD, in the variable order. During each loop, if any node n
belongs to the reachedSet[var(n)] with (frontier[n] = true), then the procedure
adds the assignment of var(n) in X to R and ignores the child node of n which
can be reached by the frontier edge of n by not adding it to the reachedSet. In
the case there was no frontier node in reachedSet[bi], then the lines 18-20 adds
both the child nodes of each n ∈ reachedSet[bi] to the reachedSet if they are
not terminal nodes. At the line-21, the procedure returns the obtained minimal
reason R, such that R ∧ b ⇒ (v := a).

Lemma 3. If (nf , nf+1) is a frontier edge, then the FindFrontier results in
frontier[nf ] = true.

Proof. Let a solution path p for which (nf , nf+1) is a frontier edge be p =<
n1, n2, . . . , nf , nf+1, . . . , nl >, where n1 = b and nl = 1. We know (v := ¬a) ∈ p.

It can be observed that the FindFrontier procedure ensures that, for f < j ≤ l,
reach1[nj ] = true. Since nl = 1, this trivially holds for nl, as initialized at the
line-1 of the MinimalReason procedure. For f < j < l, the edge (nj , nj+1)
is not a conflicting edge by frontier edge definition, also (nj , nj+1) does not
correspond to the assignment (v := a) as (v := ¬a) ∈ p. Hence, for f < j < l,
the FindFrontier procedure ensures that reach1[nj+1] ⇒ reach1[nj ]. Therefore,
for f < j ≤ l, reach1[nj ] = true, which implies reach1[nf+1] = true.

Since reach1[nf+1] = true during the call FindFrontier(nf ), the lines 12-17 of
the procedure will ensure that frontier[nf ] = true. ��

Theorem 2. If MinimalReason (X, b, (v := a)) returns R then R∧b ⇒ (v := a).

Proof. We show that in any solution path p in the BDD b with (v := ¬a) ∈ p,
there exists a conflicting edge w.r.t. R. Hence, for any solution S ∈ b, if (v :=
¬a) ∈ S, then S /∈ (R ∧ b), which proves the theorem.

The proof is by contradiction. Suppose there exists a solution path p in the
BDD b with (v := ¬a) ∈ p. Let p =< n1, n2, . . . , nf , nf+1, . . . , nl >, where
n1 = b, nl = 1 and (nf , nf+1) is the frontier edge. Lets assume the path does not
use any conflicting edge w.r.t R. Then, we show that nf ∈ reachedSet[var(nf )]
and hence the assignment of var(nf ) in X , which conflicts (nf , nf+1), belongs
to R, which is a contradiction.

Since by assumption the path p does not contain any conflicting edge w.r.t
R, for any edge (ni, ni+1) in p, if the assignment corresponding to the edge is
(var(ni) := a′), then (var(ni) := ¬a′) /∈ R.

Then for 1 ≤ i ≤ f , ni ∈ reachedSet[var(ni)]. This holds trivially for i =
1 as initialized at the line-3. For 1 ≤ i < f , since by assumption the edge
(ni, ni + 1) is not a conflicting edge w.r.t R, the procedure would have added
ni+1 to reachedSet[var(ni+1)], irrespective of the value of the foundFrontier flag
during the loop at the line-4 for var(ni). Hence, nf ∈ reachedSet[var(nf )].
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During the loop corresponding to var(nf ), at the line-4 of the MinimalReason
procedure, since nf ∈ reachedSet[var(nf )] and by Lemma 3, frontier[nf ] = true,
the foundFrontier flag will be true. Hence, the assignment to var(nf ) in X will be
in R, with (nf , nf+1) being a conflicting edge w.r.t. R, which is a contradiction.

��

Theorem 3. If MinimalReason (X, b, (v := a)) returns R then R is a minimal
reason.

Proof. Let (v′ := a′) ∈ R. The MinimalReason includes (v′ := a′) in R only if
there exists a node n with frontier[n] = true, var(n) = v′ and n ∈ reachedSet[v′].
Hence, by the frontier edge definition, an edge of the form (n, n′) is the only
conflicting edge w.r.t R in a solution path p with (v := ¬a) ∈ p. Hence, the
removal of (v′ := a′) from R would imply R∧b ⇒ (v := a) is not true. Therefore,
R is minimal. ��

Theorem 4. The MinimalReason procedure takes time at most linear in |b|.

Proof. The total amount of space used by all the used data-structures is at most
linear in b. We can ignore the number of variables k when compared with |b|,
as |b| could be exponential in k.

After excluding time taken by the descendant calls, each call to the Find-
Frontier procedure takes constant time. Hence, the call FindFrontier(b) in total
takes time at most linear in |b|.

The running time of MinimalReason procedure, excluding the call to Find-
Frontier, is dominated by the loop at line-4. The loop iterates k times. Since a
node n in the BDD b is added to reachedSet[var(n)] at most once during all the
k iterations, the total time required for all the k loops is linear in b.

Hence, the MinimalReason procedure takes time at most linear in |b| to find
a minimal reason. ��

5 Related Work

A method for finding minimal reasons in BDDs was presented in [7], which
we call as the PADL06 method. The authors did not specify the worst case
running time of the PADL06 method. But, the PADL06 method uses existential
quantification operations on BDDs and hence quite costly when compared to
our new linear-time method. If the BDD b is defined over the variables in Vb,
the PADL06 method existentially quantifies the variables in (Vb\VX) from the
BDD b for finding a minimal reason. Note, the time and space complexity of each
existential quantification operation in the worst case could even be quadratic [1]
in |b|. Precisely, some of the advantages of our new method over the PADL06 [7]
method are:

1. Worst case linear running time.
2. No costly BDD operations like existential quantifications.
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3. No creation of new BDD nodes, the BDDs remain static during our solution
process. Our new minimal reason method just uses the underlying directed
acyclic graph of the BDDs, and hence does not require a full BDD package,
while the PADL06 method requires a full BDD package.

In [14], the authors did not give details of their method for generating minimal
reasons in BDDs, even the complexity of their method was not mentioned.

6 Experiments

We have implemented our new minimal reason algorithm as part of a constraint
solver with nogood learning. Our solver uses the BuDDy1 BDD package. Our
solver just uses the lexicographic variable order.

Given a CSP instance in the CLab [15] input format, we use the CLab tool to
compile BDDs, one BDD for each constraint in the CSP. This will convert the
input CSP instance into a list of Boolean variables and a set of BDDs defined over
those variables. Our tool takes the set of BDDs as input and uses our constraint
solver to find a solution. Our tool is designed after the BDD-based hybrid SAT
solver in [14], which requires a method for MINIMAL BDD-REASON .

We use the 34 CSPs modelling power supply restoration problem in our exper-
iments. The instances are available online2, in the CLab format. All the instances
are satisfiable.

We have also implemented the PADL06 [7] method in our tool for comparison.
To study the scalability of the PADL06 method and our new method, for each
input CSP, we create three types of instances in BDD format with increasing
BDD sizes. The first type called Group-1 instance, as mentioned above, is ob-
tained by building one BDD for each constraint in the CSP. The second type
called Group-5 instance is obtained by first partitioning the constraints into
�|C|/5	 disjoint groups of constraints in the CSP. Each group will have at most
five consecutive constraints, in lexicographic order. Then one BDD will be built
to represent the conjunction of the constraints in each group. The third type
called Group-10 instance is created similar to Group-5, but by using groups of
size ten. Since the size of a BDD representing conjunction of five constraints will
be usually larger than the sum of the sizes of five BDDs representing each one of
the five constraints, the sizes of the BDDs in a Group-5 instance will usually be
larger than those in the matching Group-1 instance. Hence, by using Group-1,
Group-5 and Group-10 instances of an input CSP, we can study the scalability
of the new method and the PADL06 method over increasing BDD sizes.

All our experiments are done in a Cygwin environment with Intel Centrino
1.6 GHz processor and 1 GB RAM.

The conversion of the 34 CSPs into Group-k types, for k ∈ {1, 5, 10}, resulted
in 102 instances in BDD representation. To compare our new method with the
PADL06 method, we used our solver to find a solution for each one of the 104

1 http://buddy.sourceforge.net/
2 http://www.itu.dk/research/cla/externals/clib
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Table 1. Instance Characteristics. |V |: the number of variables in the input CSP. |V ′|:
the number of Boolean variables required to encode the original variables. |C|: the
number of constraints. Max: the size of the largest BDD in the corresponding Group-
k instance. Total: the sum of the sizes of all the BDDs in the corresponding Group-k
instance.

Instance BDD Size
Group-1 Group-5 Group-10

Name |V | |V ′| |C| Max Total Max Total Max Total

and-break-complex 414 998 852 755 38808 3540 110340 62735 459564
complex-P1 299 731 592 755 24055 13523 77414 139048 356546
complex.10 414 998 849 631 33923 4271 89448 38901 262059
complex.11 414 998 849 608 32937 4371 89168 40235 276547
complex.12 414 998 849 724 37902 5443 108263 55494 349829
complex 414 998 849 755 38804 5823 112873 60903 381951

Table 2. Solution Time (ST) and Minimal Reason Time (MRT)

Group-1 Group-5 Group-10
Name PADL06 NEW PADL06 NEW PADL06 NEW

ST, MRT ST, MRT ST, MRT ST, MRT ST, MRT ST, MRT

and-break-complex 3.20, 1.03 2.94, 0.00 13.12, 7.49 7.40, 1.21 50.54, 41.02 14.62, 4.40
complex-P1 1.24, 0.76 1.14, 0.03 3.88, 2.27 2.98, 0.16 37.13, 21.52 18.17, 2.32
complex.10 5.04, 1.48 4.44, 0.01 9.19, 5.27 5.55, 0.90 58.01, 45.10 15.96, 4.89
complex.11 5.81, 1.54 5.14, 0.01 6.47, 3.86 3.95, 0.60 17.26, 12.81 6.73, 1.31
complex.12 2.65, 1.21 2.14, 0.04 3.15, 2.43 2.07, 0.27 22.40, 18.10 6.96, 1.75
complex 3.19, 1.08 2.94, 0.01 19.91, 9.94 12.29, 1.88 227.75, 189.04 41.77, 15.20

instances, first using our new method and then using the PADL06 method.
We repeated each experiment thrice and obtained the average values. For each
instance, we noted the total time taken to find a solution, and the total time
taken for the calls made to the corresponding minimal reason method. We used
the gprof tool to measure the time taken by the minimal reason procedure calls.

Since we do not have space to list the details for all the 34 instances, we picked
five relatively large instances and present their characteristics in Table 1. The
Table 2 presents the time taken for finding a solution and the total time taken
for finding minimal reasons in both the type of experiments on the five instances.

The Figure 6 and Figure 7 plots the solution time and minimal reason time
for the both the minimal reason methods, for all the instances.

The tables andfigures showthat thenewmethod is at least as fast as thePADL06
method in all the used instances. The new method is even 10 times faster than the
PADL06 method. Also, the new method scales better than the PADL06 method as
the run-time difference between the new method and the PADL06 method widens
from a Group-1 instance to the matching Group-10 instance.

In the case of the complex Group-10 instance, the PADL06 method dominates
the solution time taking 83% of the solution time, while the usage of the new
method reduces the solution time to less than a fifth.
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7 Conclusion

We have shown that the problem of finding a minimum reason for an implication
by a BDD is NP-complete. We have also presented a linear-time algorithm for
finding minimal reasons, which can be used to improve the nogood reasoning
process in hybrid constraint solvers using BDDs. Our experiments shows that
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the new method for finding minimal reasons is better than the previous method
for several instances and also scales well due to linear time complexity.
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Abstract. Nonlinear constraint satisfaction or optimisation models need
to be reduced to equivalent linear forms before they can be solved by (Inte-
ger) Linear Programming solvers. A choice of linearisation methods exist.
There are generic linearisations and constraint-specific, user-defined lin-
earisations. Hence a model reformulation system needs to be flexible and
open to allow complex and novel linearisations to be specified. In this pa-
per we show how the declarative model reformulation system Cadmium
can be used to effectively transform constraint problems to different lin-
earisations, allowing easy exploration of linearisation possibilities.

1 Introduction

The last decade has seen a trend towards high-level modelling languages in
constraint programming. Languages such as ESRA [1], Essence [2], and Zinc [3]
allow the modeller to state problems in a declarative, human-comprehensible
way, without having to make subordinate modelling decisions or even to commit
to a particular solving approach. Examples of decisions that may depend on the
target solver are: the representation of variables of a complex type such as sets
or graphs, and the translation of constraints into those provided by the solver
to be used. Such decisions need to be taken if a concrete solver such as Gecode,
ILOG Solver, CPLEX or Eclipse is to be used directly.

The problem solving process is thus broken into two parts. First, a high-
level, solver-independent, conceptual model is developed. Second, the conceptual
model is mapped to an executable version, the design model. Typically, an iter-
ative process of solver selection, model formulation or augmentation, and model
transformation, followed by experimental evaluation, is employed.

An imbalance exists in how the steps of this process are supported in prac-
tice. For the task of model formulation, there are well-designed, open, high-level
modelling languages. In contrast, the task of model transformation is typically
done by fixed procedures inaccessible to the modeller. It is hard to see that there
is a single best set of transformations that can be wrapped and packed away. We
therefore conclude that a strong requirement on a model transformation process
and platform is flexibility.

In this paper we describe how we transform high-level models written in the
modelling language MiniZinc [4] (a subset of Zinc) into Integer Linear Pro-
gramming (ILP) models. The transformations are written in our term-rewriting

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 68–83, 2008.
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based model transformation language Cadmium [5]. The rules and transforma-
tions are directly accessible to the modeller and can be freely examined, mod-
ified, and replaced. A major strength of Cadmium is its tight integration with
the Zinc modelling language. The rules operate directly on Zinc expressions; as
a result, transformations are often very compact and comprehensible. Another
strength of the approach is easy reusability. For example, in the linearisation of
MiniZinc models we reused transformations originally designed for transforming
MiniZinc models to FlatZinc (a low-level CP solver input language).

Our computational experiments, where MiniZinc models are transformed
into CPLEX LP format, demonstrate the advantages of our system. It allows
the user to experiment with different ways of linearising logical constraints as
well as high-level constraints such as all different [6,7].

2 Languages and Systems

2.1 The Zinc Family of Modelling Languages

Zinc [3] is a novel, declarative, typed constraint modelling language. It provides
mathematical notation-like syntax (arithmetic and logical operators, iteration),
high-level data structures (sets, arrays, tuples, Booleans), and extensibility by
user-defined functions and predicates. Model and instance data can be sepa-
rate. MiniZinc [4] is a subset of Zinc closer to existing CP languages that is
still suitable as a medium-level constraint modelling language. FlatZinc, also
described in [4], is a low-level subset of Zinc designed as a CP solver input lan-
guage. It takes a role for CP systems comparable to that taken by the DIMACS
and LP/MPS formats for propositional-satisfiability solvers and linear solvers,
resp.

A Zinc model consists of an unordered set of items such as variable and pa-
rameter definitions, constraints, type definitions, and the solving objective. As an
example, consider the following MiniZinc model of the Golomb Ruler problem.
The problem consists in finding a set of small integers of given cardinality such
that the distance between any pair of them differs from the distance between
any other pair.

int: m = 4;
int: n = m*m;
array[1..m] of var 0..n: mark;
array[1..(m*(m-1)) div 2] of var 0..n: differences =

[ mark[j] - mark[i] | i in 1..m, j in i+1..m ];

constraint mark[1] = 0;
constraint % The marks are ordered, and differences distinct

forall ( i in 1..m-2 ) ( mark[i] < mark[i+1] )
∧ all different(differences);

constraint mark[2] - mark[1] < mark[m] - mark[m-1]; % Symmetry

solve minimize mark[m];

Let us consider the items in textual order.
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– The first and second lines declare the parameters m and n, both of type int.
– The following two lines declare the decision variables in arrays mark and

differences. The variables of either array take integer values in the range
0..n. The index set of mark are the integers in the range 1..m. The array
differences is defined by an array comprehension.

– Next is a constraint item fixing the first element of mark to be zero. The
remaining constraints order the marks, make the differences distinct, and
finally break a symmetry.

– The final item is a solve item, which states that the optimal solution with
respect to minimising the final mark at position m should be found.

More detail about the Zinc language family is available in [3,8,4].

2.2 The Cadmium Model Transformation System

Cadmium [5] is a declarative, rule-based programming language based on asso-
ciative, commutative, distributive term rewriting. Cadmium is primarily target-
ted at Zinc model transformation, where one Zinc model is transformed into
another by a Cadmium program (mapping). A rule-based system for constraint
model transformation is a natural choice as such transformations are often de-
scribed as rules in the first place.

Cadmium is well-suited for Zinc model transformation because of the tight
representational integration between the two languages. A Cadmium program
is a sequence of rules of the form

CCHead \ Head ⇔ Guard | Body

where Head and Body are arbitrary terms that in particular can involve Zinc
expressions. Any expression from the current model matching Head is rewritten
to the expression Body if the rule application requirements given by CCHead and
Guard are satisfied (either of which can be absent). The rules in the program are
repeatedly applied until no more applications are possible. The obtained model
is the result of the transformation.

Cadmium has its roots in CHR [9] but substantially extends it by several
features, briefly described in the following. See [5] for a thorough exposition.

Associative Commutative Matching. An operator ◦ is Associative Com-
mutative (AC) if it satisfies x ◦ (y ◦ z) = (x ◦ y) ◦ z and x ◦ y = y ◦ x. AC
operators are common, e.g. +, ∗, ∧, ∨, ∪, ∩. Cadmium supports AC matching,
which means the order and nested structure of expressions constructed form AC
operators does not matter; e.g. 0 + a can match X + 0 with X = a. This re-
duces the number of rules required to express a transformation. AC matching is
a standard feature of other term rewriting languages, e.g. Maude [10].

Conjunctive Context Matching. Cadmium supports matching based on
the pseudo-distributive property X ∧ f(Y1, ..., Yn) = X ∧ f(Y1, ..., X ∧ Yi, ..., Yn)
of conjunction for all functions f . This is in contrast to performing classical
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distribution where the X disappears from the top-level and is distributed to
all arguments at once. Using this approach, conjunct X is visible in any sub-
expression S of f : we say that X is in the conjunctive context (CC) of S.

A Cadmium rule in which a CCHead prefix is present uses CC matching. In
order for the rule to fire, CCHead must match (part of) the conjunctive context
of the expression that matches Head . CC matching can for example be used to
implement parameter substitution in constraint models by the rule

X = C \ X ⇔ C.

If an equation X = C appears in the conjunctive context of an X, then this rule
rewrites X to C. Consider the expression f(a,a+b,g(a)) ∧ a = 3. Equation
a = 3 is in the CC of all occurrences of a in the rest of the expression. After
exhaustively applying the rule, the result is f(3,3+b,g(3)) ∧ a = 3.

CC matching is very powerful because it allows the user to match against non-
local information. As far as we are aware, CC matching is unique to Cadmium.

User-Definable Guards. Cadmium supports rule with guards. A rule in which
a guard is present can only be applied if the guard holds, that is, if the Guard
expression can be rewritten to true. Cadmium provides a number of simple
guards, such as is int(X) to test whether X is an integer constant. Importantly,
guards can also be defined by the user via rules.

Staged Transformations. Beyond atomic transformations that consist of a
single rule set, Cadmium also supports composite, staged transformations: se-
quences of atomic transformations. Each atomic transformation is applied to the
model in sequence, with a commitment to the intermediate results.

2.3 Representation of Zinc Models in Cadmium

Conceptually, Cadmium operates directly on Zinc expressions and items (we
emphasise this by printing Zinc keywords in bold). The following details of the
Zinc representation in Cadmium term form are worth pointing out:

– All Zinc items in the model are joined by conjunction. Thus the Zinc model

constraint X = 3;
solve satisfy;

is treated as

constraint X = 3 ∧ solve satisfy.

The advantage is that Zinc items are in each other’s conjunctive context.
– The conjunction of Zinc items is wrapped by a top-level model functor.

This representation allows top-down model transformation in the way non-
term-rewriting-based approaches work, rewriting the entire model at once:

model Model ⇔ ...

However, in our experience, top-down model transformations are almost
never needed.
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3 Transforming Nonlinear MiniZinc into linear Integer
Programming format

There are several ways of linearising constraints. A generic method is the Big-M
approach, used to convert a logical combinations of linear constraints into a
conjunction of linear constraints. A finite domain constraint can always be writ-
ten as a logical combination of linear constraints, by reverting to some logical
definition of it.

For some high-level constraints, alternative definitions can be given that tightly
reflect their structure onto auxiliary variables, for example, 0/1 integer variables
encoding assignments of original variables.

3.1 The Generic Big-M Transformation

At the core of this linearisation approach is the fact that a disjunction (x � 0)∨b,
where b is a propositional variable, is equivalently written as the inequation
x � ubound(x) · b, where ubound is an upper bound on the value of the variable x.
Our transformation first normalises a MiniZinc model and then transforms it
into negation normal form. The next steps are based on the work by McKinnon
and Williams [6] and Li et al. [11]. We simplified their transformation and made
some steps, such as Boolean normalisation, more explicit.

Li et al. [11] define the modelling language L+, which consists of linear arith-
metic constraints, Boolean operators, and some additional constraints such as
at most and at least. Steps of the transformation described in [11] are:

– Transformation of L+ into negation normal form.
– Transformation of simplified L+-formulas into Γ -formulas. A Γ -formula is of

the form Γm{P1, . . . , Pn} and is true if at least m of {P1, . . . , Pn} are true.
Each Pi is a Γ -formula, a linear constraint, or a propositional literal.

– Flattening of nested Γ -formulas.
– Transformation of Γ -formulas into linear constraints.

Our transformation is based on this procedure. After several normalisation
and decomposition steps, we generate Γ -formulas which are then further trans-
formed into a linear form of MiniZinc. In the decomposition steps we provide
several alternative transformations, and we allow the user to experiment with
possible combinations of those alternatives. As a final step, we currently write
out the obtained linear model in CPLEX LP format, for directly feeding it into
most of the currently available ILP solvers.

We outline the major transformation steps in the following, giving actual
Cadmium example rules for illustration.

ModelNormalisation. MiniZinc allows substantial freedom in the way models
are written and so adapts to the preferred visual style of the model writer. The first
step in our conversion is to rewrite simple, equivalent notations into a normal form.
Examples are the joining of constraint items and the replacement of synonyms:

(constraint C) ∧ (constraint D) ⇔ constraint C ∧ D;

X == Y ⇔ X = Y;
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Predicate Inlining. We currently use a top-down transformation, traversing
the entire model term, to replace a call to a predicate (or function) by the
respective instantiated predicate body.

This is our only case of a model-wide top-down transformation. We are cur-
rently moving towards a modified Zinc term representation in which predicate
applications are wrapped in a reserved functor. Matching can then take place
against this functor, and the need for a top-down transformation will be removed.

Parameter Substitution and Comprehension Unfolding. The next steps,
while defined separately and listed in sequence, depend on and enable one an-
other. In a non-term-rewriting approach, an explicit iteration loop would be
needed to compute the mutual fixpoint. In Cadmium, each individual atomic
transformation corresponds to a set of rules, and the composite transformation
is the union of these rule sets. Once the composite transformation has reached
stabilisation, the mutual fixpoint of the separate rule sets is obtained.

1. Parameter substitution.
We use the conjunctive context of a parameter to retrieve its value:

X = C \ X ⇔ is int(C) | C;
2. Evaluation.

Parameter substitution may allow us to simplify the model. We here apply
rules that do so by taking into account the semantics of Zinc constructs:

X ∨ true ⇔ true;
X + Y ⇔ is int(X) ∧ is int(Y) | X !+ Y;
X � C ⇔ is int(C) ∧ ubound(X) !� C | true;

The first rule simplifies a Boolean expression, the second evaluates addition
of integer constants using the Cadmium built-in !+, while the third removes
constraints X � C that are redundant w.r.t. to the declared domain of X .

3. Compound built-in unfolding.
This step inlines predicates/functions such as forall, sum that are compound
built-ins in MiniZinc:

sum([]) ⇔ 0;
sum([E ! Es]) ⇔ E + sum(Es);

Note the Cadmium syntax for array literal decomposition shown here.
4. Comprehension unfolding.

An example for a simple case are these rules:
[E | X in L..U] ⇔ L > U | [];
[E | X in L..U] ⇔ [subst(X=L, E) ! [E | X in L+1..U]];

The subst term denotes a substitution and is reduced accordingly.

These transformations are not specific to the MiniZinc linearisation task.
Indeed, they are also used in the MiniZinc to FlatZinc transformation.

Decomposition of High-Level Constraints. In addition to the previously
defined normalisations and decompositions, we decompose different generic con-
straints such as the domain constraint, here in Zinc notation:

X in A..B ⇔ is int(A) ∧ is int(B) | A � X ∧ X � B;
X in S ⇔ is set(S) | exists([ X = D | D in S ]);
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We discern two cases of the respective set. If it is in range form, the constraint
can be mapped onto two inequalities. Otherwise, it is mapped to a disjunction
over the set values, which can be written using Zinc comprehension notation.

An array lookup with a variable index, corresponding to an element con-
straint, is transformed into a disjunction over all possible index values:

Y = A[X] ⇔ is variable(X) |
exists([ X = D ∧ A[D] = Y | D in dom(X) ]);

The expression dom(X) using the Zinc built-in dom is rewritten into the de-
clared domain of the variable X, by rules we omit here. Zinc has a variety of
such built-ins; index set to retrieve an array index set is another useful one.

An all different constraint is simply decomposed into a conjunction of
inequations of the variable pairs:

all different(X) ⇔
forall([ X[I] �= X[J] | I,J in index set(X) where I < J ]);

Minimum and maximum constraints are similarly decomposed. Furthermore,
strict inequalities and disequalities are rewritten into expressions using only in-
equalities.

Since the decomposition of high-level constraints may introduce comprehen-
sions and since further expression simplification can often be done, the rules for
comprehension unfolding and expression evaluation are again imported into this
stage.

Negation Normal Form. We transform formulas into negation normal form
in the usual way. For example

(x - y < 5 ∧ y - x < 5) → (z � 1)

is rewritten into

((x - y � 5) ∨ (y - x � 5)) ∨ (z � 1).

N-Ary Conjunction and Disjunction. We conjoin these binary connectives
into an n-ary form, (using functors conj,disj), which is then transformed into
Γ -formula form:

disj(Cs) ⇔ gamma(Cs, 1);
conj(Cs) ⇔ gamma(Cs, length(Cs));

The second argument to gamma is the minimum number of subformulas that need
to hold. The formula from the example above becomes:

gamma([gamma([x - y � 5, y - x � 5], 1), z � 1], 1).

Big-M Linearisation. This is the central step. It relies on the fact that all
constraints were previously normalised. We proceed top-down, starting at the
top-most gamma formula.
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constraint gamma(Cs, M) ⇔
constraint implied gamma(true, Cs, M, []);

implied gamma(B, [], M, Bs) ⇔ B → sum(Bs) � M;
implied gamma(B, [C ! Cs], M, Bs) ⇔

let { var bool: Bi } in
((Bi→ C) ∧ implied gamma(B, Cs, M, [bool2int(Bi) ! Bs]));

B → E � F ⇔ E-F � lbound(E-F) * (1-bool2int(B));

The second and third rule transform a formula B → Γm(C ) into a conjunction
of implications Bi → Ci. The Bi are accumulated in a list, which is used for
the constraint B →

∑
i Bi � m. An implication whose consequence is a gamma

formula is turned into implied gamma form again (not shown here for brevity).
The last rule finally rewrites a simple implied linear inequation into pure linear
form. The lbound term is rewritten into a safe lower bound of its argument
expression which may include decision variables.

We optimise the linearisation by distinguishing special cases such as in

implied gamma(B, [Bi ! Cs], M, Bs) ⇔ is variable(Bi) |
implied gamma(B, Cs, M, [bool2int(Bi) ! Bs]);

which leads to fewer auxiliary Boolean variables being created.

Let us revisit part of our example. Assume x and y are in 0..10.

gamma([x - y � 5, y - x � 5], 1)

is stepwise transformed as follows (where we omit bool2int for brevity):

B → gamma([x - y � 5, y - x � 5], 1)

implied gamma(B, [x - y � 5, y - x � 5], 1)

(B1 → x - y � 5) ∧ (B2 → y - x � 5) ∧ (B → B1+B2 � 1)

(x - y - 5 � -15*(1 - B1)) ∧ (y - x - 5 � -15*(1 - B2)) ∧
(B1 + B2 - 1 � -1*(1 - B))

Boolean Variables to 0/1 Variables. In this step, we recast Boolean vari-
ables as 0/1 integer variables, by simply substituting the type:

bool ⇔ 0..1;
bool2int(B) ⇔ B;

Output to LP Format. The concluding stage prints out the linear model
in CPLEX LP format using Cadmium’s I/O facilities. The result of applying
the transformations to the Golomb Ruler problem of Section 2.1 is given in the
Appendix.

3.2 Equality Encoding for High-Level Constraints

For a constraint such as all different, the Big-M -linearisation applied to its
naive decomposition does not result in a so-called sharp formulation: one that
represents the convex hull of the constraint. Sharp formulations for a number
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of common constraints are given in Refalo [7]. At the core of many sharp for-
mulations is the explicit encoding of variable assignments. Given a variable x
with domain D(x), for each a ∈ D(x) a propositional variable for the assignment
x = a is introduced. We write such a variable as [[x = a]].

In this way, a sharp linear formulation of the domain constraint x ∈ S is∑
a∈D

[[x = a]] = 1 ∧ x =
∑
a∈D

a[[x = a]].

For the all different constraint over variables xi with respective domain
D(xi), one can use the linear constraints

n∑
i=1

[[xi = a]] � 1 for each a ∈
n⋃

i=1

D(xi).

They represent the fact that each value in any variable domain can be used by
at most one variable. The Cadmium rule setting up this encoding is as compact:

all different equality encoding(Xs, Xi eq a) ⇔
forall([ sum([ Xi eq a[I,A] | I in index set(Xs) ]) � 1

| A in array union([ dom(Xs[I]) | I in index set(Xs) ]) ]);

The array Xi eq a collects the [[ x = a ]] variables. In order to share these en-
coding variables between different high-level constraints, the link between an
original variables x and its associated encoding variables is maintained by en-
coding tokens (terms). These tokens are installed at the model top-level during
the encoding stage and are thus in the conjunctive context of any constraint
whose translation needs them.

To contrast the available approaches for all different, consider the Mini-
Zinc fragment:

array[1..n] of var -n..n: x;
constraint all different(x);

The Big-M translation of all different gives:

array[1..n, 1..n] of 0..1: B1;
array[1..n, 1..n] of 0..1: B2;
constraint

forall(i in 1..n, j in i+1..n) (
x[i] - x[j] + 1 � (2 * n + 1) * (1 - B1[i, j]) ∧
x[j] - x[i] + 1 � (2 * n + 1) * (1 - B2[i, j]) ∧
B1[i, j] + B2[i, j] � 1 );

while the transformation using the equality encoding results in:

array[1..n, -n..n] of 0..1: xv;
constraint

forall(i in 1..n) (
sum([ a * xv[i, a] | a in -n..n ]) = x[i] ∧
sum([ xv[i, a] | a in -n..n ]) = 1 );

constraint
forall(a in -n..n) ( sum([ xv[i, a] | i in 1..n ]) � 1 );
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The element constraint z = a[x] for a variable x and an array a of integer
constants can be represented as

z =
∑

i∈D(x)

a[i] · [[x = i]],

which is embodied in the rule

element equality encoding(A, X, Y, X eq d) ⇔
Y = sum([ A[D] * X eq d[D] | D in dom(X) ]);

This encoding is not applicable in the case when the array has variable elements.
Our transformation verifies this and falls back to the naive Big-M decomposition
approach if needed.

The basis for these linearisations of high-level constraints comes from the
linear representation of disjunctive programs [12]. A further generalisation would
be to directly apply this linearisation to the constraint in negation normal form.

3.3 Context-Dependent Constraint Generation

If we take into account the context of a constraint we may be able to simplify
its translation. The Tseitin transformation [13] for converting Boolean formulas
into clausal form takes this into account, usually reducing the number of clauses
by half. For (Integer) Linear Programming there are common modelling “tricks”
that make use of context. For example, the max(y,z) expression in both of the
following cases

constraint 8 � max(y,z);
solve minimize max(y,z);

can be replaced by a new x constrained by x � y ∧ x � z. In the first case,
we only need to require the existence of any value between 8 and y,z, and in
the second case, minimisation will force x to equal either y or z.

In general if a variable is only bounded from above in all constraints, we can
translate an equation defining the variable as an inequality that bounds it from
below. For example x = max(y,z) is replaced by x � y ∧ x � z as above if
x is only bounded from above, and replaced by x � t ∧ (t � y ∨ t � z),
where t is a new variable, if x is only bounded from below.

This reasoning can be concisely implemented in rule form:

max(X, Y) ⇔ pol(ID, pos, max context(X,Y, ID));

E + pol(ID, P, F) ⇔ pol(ID, P, E + F);
E - pol(ID, P, F) ⇔ pol(ID, invert(P), E - F);

pol(ID, P, E) � F ⇔ pol(ID, P, E � F);
pol(ID, P, E) � F ⇔ pol(ID, invert(P), E � F);
pol(ID, , E) = F ⇔ pol(ID, all, E = F);

constraint pol(ID, P, E) ⇔ pol(ID, P) ∧ constraint E;
solve minimize pol(ID, P, E) ⇔ pol(ID, P) ∧ solve minimize E;

pol(ID, all) \ max context(X,Y, ID) ⇔ max complete(X,Y);
pol(ID, pos) \ max context(X,Y, ID) ⇔ max bounded above(X,Y);
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We add a polarity marker to each occurrence of a nonlinear expression in ques-
tion. Polarity markers then travel upwards in the expression tree until the top-
level, recording possible polarity changes. (The rules for invert, not shown here,
map pos to neg and vice versa, and all to itself). Once at the top-level, the po-
larity of the expression occurrence is known, and it can be replaced accordingly.

3.4 Constraint Relaxations

Given we have completely captured the meaning of a high-level constraint such
as element or all different by some linearisation, we are free to add other
linear relaxations of the constraints to the model in order to improve the solv-
ing behaviour. Hooker [14] describes a number of simple and complex linear
relaxations for various high-level constraints.

As an example, consider the element constraint Y = A[X ] where A is a fixed
array. We can add bounds to Y as follows:

Y = A[X] ⇔ is variable(X) ∧ fixed array(A) |
exists([X = D ∧ A[D] = Y | D in dom(X)]) ∧
Y � min([A[D] | D in dom(X)]) ∧
Y � max([A[D] | D in dom(X)]);

4 Case Studies

In this section we report on evaluations of various choices in transforming Mini-
Zinc into LP format. We show that the best choice is problem-dependent and,
therefore, that an open transformation system facilitating experimentation is
important. For reference, we also give results on transforming MiniZinc to the
low-level CP solver input language FlatZinc.

The experiments were performed on a 3.4Ghz Intel Pentium D with 4Gb
RAM computer running Linux. The FlatZinc models were solved by the G12
finite domain solver using its default (first-fail) search. The LP models were
solved using CPLEX 10.0 with default parameter settings. The solvers were
aborted if they did not return a result within a reasonable amount of time; this
is indicated in the tables.

4.1 Big-M Decomposition and Equality Encoding

For this comparison we use the following examples:

– eq20: twenty linear constraints;
– jobshop: square job scheduling (2 × 2, 4 × 4, 6 × 6, 8 × 8);
– mdknapsk: multidimensional knapsack problem (〈n, m〉 ∈ {〈5, 3〉, 〈100, 5〉});
– packing: packing squares into a rectangle (size 4);
– queens: the N-queens problem (sizes 8, 10, 20);
– alpha: a crypt-arithmetic puzzle;
– golomb: the Golomb ruler problem (m ∈ {4, 6, 8});
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Table 1. Results of the described transformations on several different models

name MiniZinc FlatZinc LP Big-M decomp. LP equality enc.
lines lines transl. solve lines transl. solve lines transl. solve

eq20 63 82 0.31s 0.18s 43 0.44s 0.00s ′′

jobshop2x2 20 18 0.28s 0.10s 37 0.40s 0.00s ′′

jobshop4x4 22 141 0.31s 0.18s 227 0.48s 0.02s ′′

jobshop6x6 24 492 0.49s 8.65s 749 0.67s 1.72s ′′

jobshop8x8 26 1191 0.73s >300s 1771 1.11s >300s ′′

mdknapsk5 3 21 16 0.29s 0.07s 25 0.42s 0.00s ′′

mdknapsk100 5 75 176 0.60s >300s 217 1.36s 0.61s ′′

packing 32 237 0.33s 0.16s 378 0.53s 0.00s ′′

queens 8 9 86 0.31s 0.17s 613 0.56s 0.06s ′′

queens 10 9 137 0.32s 0.15s 974 0.72s 0.36s ′′

queens 20 9 572 0.49s 0.21s 4039 2.42s >300s ′′

alpha 52 53 0.29s 0.16s 2356 1.64s 0.13s 1511 1.32s 0.51s
golomb4 11 14 0.30s 0.07s 144 0.46s 0.00s 272 0.47s 0.01s
golomb6 11 25 0.31s 0.18s 807 0.69s 0.10s 1249 1.02s 0.53s
golomb8 11 40 0.32s 1.49s 2763 1.70s 19.36s 3878 3.28s >300s
perfsq10 16 89 0.28s 0.17s 949 0.91s 0.12s 493 0.60s 0.10s
perfsq20 16 161 0.30s 1.55s 3069 3.36s 1.92s 1353 1.14s 0.42s
perfsq30 16 233 0.29s 111.29s 6389 9.10s 21.00s 2613 2.34s 0.66s
warehouses 45 476 0.45s 2.29s 1480 1.14s 1.34s 1322 0.96s 0.08s

– perfsq: find a set of integers whose sum of squares is itself a square (maximum
integer 10, 20, or 30);

– warehouses: a warehouse location problem.

The results are shown in Table 1. The problems are grouped according to the
translation features they can make use of. The eq20 and mdknapsk problems are
linear and used to gauge the performance of the parts of the transformation not
concerned with linearisation as such. The job-shop, packing and queens problems
are nonlinear models without the use of high-level constraints, so the equality
encoding variant does not differ from the Big-M variant for them. The alpha and
golomb problems use all different constraints, whereas element constraints
occur in perfsq and warehouses.

First, from these experiments we can see that while the FlatZinc translations
are often smaller, and faster to achieve than the LP format, the speed of the
ILP solver means that the LP translations are often better overall.

That the translation to LP is typically slower than to FlatZinc is not un-
expected as linearisation creates more constraints. A second, central factor is
that, while FlatZinc is output by a non-Cadmium Zinc pretty printer, the LP
format generator uses a preliminary, primitive Cadmium I/O module to write
the files. We plan to address this issue by passing the linear model to the ILP
solver directly rather than via files; and we will also optimise Cadmium I/O.

Some of the slightly bigger examples (golomb8, jobshop8x8, mdknapsk100 5,
perfsq30, and queens 20) show that translations times do scale, but the solve
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times can increase dramatically. For some examples (queens, golomb, jobshop)
we can see a clear advantage of the FD solver, whereas for other examples
(mdknapsk, perfsq) the ILP solver performs better.

For the linearisation choice, we find that for our example problems the sharp
equality encodings works well for element, whereas surprisingly all different
does not benefit from it.

4.2 Context-Dependent max Constraints

For this set of benchmarks we use a model of a cancer radiation therapy prob-
lem [15]. The model is linear with the exception of multiple occurrences of max
constraints. We compare the generic, complete linearisation and the context-
dependent one (Section 3.3). Table 2 shows the results.

One observation is that the LP translation time grows quickly with the in-
stance size. In good part this is due to Cadmium’s current suboptimal I/O
module: for example, approximately one third of the time for size 8 instances is
spent in the final step of printing the LP format text file.

The major observation in these benchmarks results, however, is the very sur-
prising fact that the complete linearisation is better in the majority of cases
than the context-dependent translation, which is less than half the size. This ap-
pears to be a consequence of an ill-guided ILP search in CPLEX in the context-
dependent case. While correct bounds on the solutions are often found quickly,
the search struggles to find integer solutions. We have been able to drastically

Table 2. Radiation problems: generic and context-dependent translations

Instance MiniZinc FlatZinc LP complete LP context-dependent
lines lines transl. lines transl. solve lines transl. solve

8 0 12 2387 3.20s 7458 16.30s 5.86s 2530 3.92s 287.27s
8 1 12 2387 2.74s 7458 16.23s 3.53s 2530 3.58s 1.71s
8 2 12 2387 2.76s 7458 16.16s 1.11s 2530 3.61s 1.11s
8 3 12 2387 2.70s 7458 16.10s 3.42s 2530 3.66s 22.32s
8 4 12 2387 2.73s 7458 16.22s 1.22s 2530 3.64s 1.38s
8 5 12 2387 2.70s 7458 16.07s 1.74s 2530 3.63s >20min
9 0 13 3008 3.92s 9547 25.63s 2.87s 3211 5.46s 5.28s
9 1 13 3008 3.90s 9547 25.62s 2.35s 3211 5.45s 2.55s
9 2 13 3008 3.94s 9547 25.61s 6.42s 3211 5.47s 2.29s
9 3 13 3008 3.88s 9547 25.69s 14.01s 3211 5.35s 170.71s
9 4 13 3008 3.90s 9547 25.40s 1.63s 3211 5.42s 588.70s
9 5 13 3008 3.93s 9547 25.76s 20.88s 3211 5.49s 21.04s
10 0 14 3701 5.72s 11894 39.28s 16.21s 3974 8.02s 1.83s
10 1 14 3701 5.73s 11894 38.74s 14.25s 3974 8.02s 660.17s
10 2 14 3701 5.67s 11894 39.43s 7.88s 3974 8.00s 8.90s
10 3 14 3701 5.68s 11894 39.07s 1.45s 3974 7.96s 5.50s
10 4 14 3701 5.67s 11894 39.44s 11.82s 3974 7.95s 7.52s
10 5 14 3701 5.65s 11894 39.31s 1.76s 3974 8.01s >20min
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improve the behaviour for some instances by an informed modification of CPLEX
parameters.1

A study of this unexpected observation is not the task of this paper. This
puzzling result does, however, support our claim that the flexibility to experiment
with different model translations is important.

5 Concluding Remarks

Cadmium is one of only a few purpose-built systems targetting constraint model
transformation, and among these, has particular strengths. Constraint Handling
Rules (CHR) is less powerful in the sense that CHR rules can only rewrite items
at the top-level conjunction. CHR implementations are also not deeply integrated
with high-level modelling languages in the way Cadmium and Zinc are.

The Conjure system [16] for automatic type refinement accepts models in the
high-level constraint specification language ESSENCE and transforms them into
models in a sublanguage, ESSENCE’, roughly corresponding to a Zinc-to-Mini-
Zinc translation. Conjure’s focus is on automatic modelling: the generation of a
family of correct but less abstract models that a given input model gives rise to.
Our current goal with Cadmium somewhat differently is to have a convenient,
all-purpose, highly flexible ‘plug-and-play’ model rewriting platform.

We have only really begun to explore the possibilities of linearisation of Mini-
Zinc models using Cadmium. There are other decompositions based on Boolean
variables [[x � d]] which could be explored; see e.g. [17,18]. There are many relax-
ations and combinations to explore. We can investigate how many IP modelling
“tricks” can be implemented using concise Cadmium analysis and rewriting.

On the technical side, we believe data-independent model transformation is a
promising direction to take. It would for example mean to postpone unfolding
comprehensions, and to transform according to the derived rather than present
kind of an expression (i.e. constant vs. variable at solve time). We would expect
transformation efficiency to greatly improve in this way.

Acknowledgements. This work has taken place with the support of the mem-
bers of the G12 project.
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A Resulting LP Format

The following is the result of applying the MiniZinc-to-LP format transforma-
tion (using the Big-M linearisation of all different) to the Golomb Ruler
problem of Section 2.1:
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Minimize mark{3}
Subject To

mark{0} = 0
mark{1} >= 1
mark{2} - 1 differences{3} - 1 mark{1} = 0
mark{3} - 1 differences{4} - 1 mark{1} = 0
mark{3} - 1 differences{5} - 1 mark{2} = 0
differences{0} - mark{1} = 0
differences{1} - mark{2} = 0
differences{2} - mark{3} = 0
mark{1} + mark{2} - 1 mark{3} <= -1
mark{1} - 1 mark{2} <= -1
differences{5} + 17 V_107 - 1 differences{4} <= 16
-1 V_108 - 1 V_107 <= -1
differences{4} + 17 V_108 - 1 differences{5} <= 16
differences{5} + 17 V_105 - 1 differences{3} <= 16
-1 V_106 - 1 V_105 <= -1
differences{3} + 17 V_106 - 1 differences{5} <= 16
differences{4} + 17 V_103 - 1 differences{3} <= 16
-1 V_104 - 1 V_103 <= -1
differences{3} + 17 V_104 - 1 differences{4} <= 16
differences{5} + 17 V_101 - 1 differences{2} <= 16
-1 V_102 - 1 V_101 <= -1
differences{2} + 17 V_102 - 1 differences{5} <= 16
differences{4} + 17 V_99 - 1 differences{2} <= 16
-1 V_100 - 1 V_99 <= -1
differences{2} + 17 V_100 - 1 differences{4} <= 16
differences{3} + 17 V_97 - 1 differences{2} <= 16
-1 V_98 - 1 V_97 <= -1
differences{2} + 17 V_98 - 1 differences{3} <= 16
differences{5} + 17 V_95 - 1 differences{1} <= 16
-1 V_96 - 1 V_95 <= -1
differences{1} + 17 V_96 - 1 differences{5} <= 16
differences{4} + 17 V_93 - 1 differences{1} <= 16
-1 V_94 - 1 V_93 <= -1
differences{1} + 17 V_94 - 1 differences{4} <= 16
differences{3} + 17 V_91 - 1 differences{1} <= 16
-1 V_92 - 1 V_91 <= -1
differences{1} + 17 V_92 - 1 differences{3} <= 16
differences{2} + 17 V_89 - 1 differences{1} <= 16
-1 V_90 - 1 V_89 <= -1
differences{1} + 17 V_90 - 1 differences{2} <= 16
differences{5} + 17 V_87 - 1 differences{0} <= 16
-1 V_88 - 1 V_87 <= -1
differences{0} + 17 V_88 - 1 differences{5} <= 16
differences{4} + 17 V_85 - 1 differences{0} <= 16
-1 V_86 - 1 V_85 <= -1
differences{0} + 17 V_86 - 1 differences{4} <= 16
differences{3} + 17 V_83 - 1 differences{0} <= 16
-1 V_84 - 1 V_83 <= -1
differences{0} + 17 V_84 - 1 differences{3} <= 16
differences{2} + 17 V_81 - 1 differences{0} <= 16
-1 V_82 - 1 V_81 <= -1
differences{0} + 17 V_82 - 1 differences{2} <= 16
differences{1} + 17 V_79 - 1 differences{0} <= 16
-1 V_80 - 1 V_79 <= -1
differences{0} + 17 V_80 - 1 differences{1} <= 16

Bounds
0 <= mark{0} <= 16
0 <= mark{1} <= 16
0 <= mark{2} <= 16
0 <= mark{3} <= 16
0 <= differences{0} <= 16
0 <= differences{1} <= 16
0 <= differences{2} <= 16
0 <= differences{3} <= 16
0 <= differences{4} <= 16
0 <= differences{5} <= 16
0 <= V_99 <= 1
0 <= V_97 <= 1

0 <= V_98 <= 1
0 <= V_95 <= 1
0 <= V_96 <= 1
0 <= V_93 <= 1
0 <= V_94 <= 1
0 <= V_91 <= 1
0 <= V_92 <= 1
0 <= V_89 <= 1
0 <= V_90 <= 1
0 <= V_87 <= 1
0 <= V_88 <= 1
0 <= V_85 <= 1
0 <= V_86 <= 1
0 <= V_83 <= 1
0 <= V_84 <= 1
0 <= V_81 <= 1
0 <= V_82 <= 1
0 <= V_79 <= 1
0 <= V_80 <= 1
0 <= V_107 <= 1
0 <= V_108 <= 1
0 <= V_105 <= 1
0 <= V_106 <= 1
0 <= V_103 <= 1
0 <= V_104 <= 1
0 <= V_101 <= 1
0 <= V_102 <= 1
0 <= V_100 <= 1

General
mark{0}
mark{1}
mark{2}
mark{3}
differences{0}
differences{1}
differences{2}
differences{3}
differences{4}
differences{5}
V_80
V_79
V_82
V_81
V_84
V_83
V_86
V_85
V_88
V_87
V_90
V_89
V_92
V_91
V_94
V_93
V_96
V_95
V_98
V_97
V_99
V_100
V_102
V_101
V_104
V_103
V_106
V_105
V_108
V_107

End
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Abstract. Declarative authorization languages promise to simplify the
administration of access control systems by allowing the authorization
policy to be factored out of the implementation of the resource guard.
However, writing a correct policy is an error-prone task by itself, and
little attention has been given to tools and techniques facilitating the
analysis of complex policies, especially in the context of access denials.
We propose the use of abduction for policy analysis, for explaining ac-
cess denials and for automated delegation. We show how a deductive
policy evaluation algorithm can be conservatively extended to perform
abduction on Datalog-based authorization policies, and present sound-
ness, completeness and termination results.

Keywords: access control, abduction, authorization language, Datalog.

1 Introduction

Authorization is the task of granting or denying access to a system’s resources ac-
cording to a policy. Traditionally, authorization policies have been implemented
by access control lists (ACL) or capabilities provided by the operating system,
sometimes augmented by groups or roles. However, there are many applications
for which these mechanisms are too inflexible, not sufficiently expressive and
provide the wrong level of abstraction. For example, access to electronic health
records is regulated by a huge number of laws that are both complex and prone
to change. Decentralized applications such as grid systems require support for
delegation of authority and attribute-based constraints.

Such requirements have led to the development of trust management systems
and declarative authorization languages for flexible, expressive application-level
access control (e.g. [1,2,3,4,5]). An authorization policy is then written as a set
of rules that are both human readable and machine enforceable. This approach
aims to increase the usability and scalability of access control systems: policies
written in such languages are more concise and have a lower viscosity than
ACLs, and provide a much higher level of abstraction, thus facilitating a closer
representation of the intended policy.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 84–99, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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However, comprehending and predicting the consequences of a policy is diffi-
cult, as policies can be complex and contain hundreds of rules, and each access
grant is based on the construction of a logical proof of compliance with respect
to this policy. Thus, writing a correct policy is still a highly error-prone task. We
conjecture that the current lack of tools for analyzing policies remains a major
obstacle to a wider adoption of authorization languages.

In this paper, we develop algorithms for analyzing the consequences of declar-
ative authorization policies. Many existing authorization languages are based on
negation-free Datalog or are translated into Datalog for evaluating access re-
quests. (A Datalog clause is a first-order definite Horn clause without function
symbols.) Datalog is sufficiently expressive for a wide range of policies, including
delegation, which requires recursion. Furthermore, Datalog is decidable and can
be evaluated efficiently. Hence, to maximize generality, our algorithms work on
policies specified in Datalog.

In particular, we focus on the tasks of explaining access grants and access
denials. In the former case, the question we are trying to answer is “why is a
given request granted?”. It is easy to see that the proof graph contains exactly
the necessary information for constructing the (possibly textual) explanation.
The basic evaluation algorithm that is used for deciding access requests can be
easily extended to construct a copy of the proof graph during evaluation.

In the case of access denial, the question is “which authorization facts or cre-
dentials were missing that would have led to an access grant?”. This turns out
to be a harder question, as the failed partial proof does not contain enough in-
formation to answer it. Moreover, there are in general infinitely many different
answers, but often only finitely many “interesting” or “useful” ones. We pro-
pose to apply abductive techniques for finding the set of meaningful answers.
Abduction [6] is a reasoning paradigm that has been used for planning, fault
diagnosis and other areas in AI, but has not previously been considered for ana-
lyzing authorization policies. Many algorithms have been developed for various
variants of abduction (see [7] for an extensive survey); in this paper, we show
that a deductive evaluation algorithm that is used for deciding access requests
can be conservatively extended to perform abduction of authorization facts and
credentials. Thus we show that existing implementations of Datalog-based au-
thorization engines can be leveraged and extended with little effort to facilitate
this kind of analysis. Moreover, we show that this algorithm can be used for
multiple purposes: (1) as the basis of a tool helping security administrators to
write and to debug policies, (2) for providing users with an answer in the case
of an access denial that is more helpful than a mere “no”, and (3) to compute
sets of missing credentials in automated distributed delegation scenarios.

The remainder of the paper is structured as follows: Section 2 first presents a
non-deterministic terminating algorithm for evaluating policies. The algorithm
is extended to construct proof graphs. A second extension is developed that
computes sets of missing facts that, if added, would lead to a positive access
decision. Section 3 presents techniques for guaranteeing that the algorithm ter-
minates. Section 4 discusses three application scenarios to illustrate the different
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ways in which the algorithm could be used. In Section 5 we discuss related work
and conclude. A technical report [8] contains full proofs.

2 Adding Abduction to Policy Evaluation

The basic authorization problem consists of deciding whether an access request
complies with an authorization policy and a set of credentials. For Datalog-
based policies, this amounts to deductive query evaluation. Tabling resolution
algorithms are proposed in [9] and [5] for evaluating queries against Datalog-
based authorization policies. These algorithms are easy to implement and are
guaranteed to terminate due to tabling [10,11].

Here we provide a generalization of these algorithms, presented as state tran-
sition systems. The non-deterministic presentation lends itself to parallel im-
plementations; moreover, it also leads to simpler soundness, completeness and
termination proofs. Section 2.2 instantiates this generalized tabling scheme to
a purely deductive policy evaluation algorithm. The evaluation algorithms in
[9] and [5] can be seen as straightforward deterministic implementations of this
general scheme. Section 2.3 illustrates a simple extension of the first one, which
facilitates the construction of proof graphs, e.g. for explaining positive access
decisions. Finally, Section 2.4 extends it further to perform abduction, which
computes the dual of the basic authorization problem, namely the sets of facts
or credentials which, according to the policy, would grant an authorization re-
quest. As shown in Section 4, this algorithm can be applied to explain access
denials, to analyze policies and to provide automated distributed delegation.

2.1 An Extensible Scheme for Policy Evaluation

Preliminaries. We use the terms groundness, substitution, unifier, most general
unifier (mgu) and (fresh) variable renaming in their standard meanings. We
assume a denumerable set of variables X and a first-order signature with a
countable (possibly infinite) set of constants C and a finite set of predicate names
(but no function symbols). An atom P consists of a predicate name applied to
an ordered list of terms, each of which is either a variable or a constant. Clauses
are of the form P0 ← �P . The atom P0 is referred to as the head, and the (possibly
empty) finite sequence of atoms �P as the body of the clause. A clause with an
empty body is also called a fact. A policy P is a finite set of clauses.

The semantics of a policy P is given by the least fixed point of the immediate
consequence operator TP [12]:

TP(I) = {P0θ : (P0 ← P1, . . . , Pn) ∈ P , Piθ ∈ I for each i, P0θ ground}

We denote the least fixed point of TP by T ω
P (∅). Intuitively, it contains all ground

atoms that are deducible from the policy. The most general unifier of atoms P
and Q is denoted by mgu(P, Q). We say that P is subsumed by Q (also written
P � Q) iff P = Qθ for some substitution θ.
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In our examples, we write variables in italics, constants in typewriter font,
and predicate names in sans serif.

An authorization policy defines authorization-relevant predicates such as
canRead, canWrite etc. Upon an access request, the resource guard issues a query
(e.g. “canRead(Alice,Foo)?”) to be evaluated against the policy. Usually, the
policy is composed of the locally stored policy plus a set of facts obtained from
(user-submitted or fetched) credentials that may support the request. We will
later show examples of policies and their uses.

Description of the Scheme. The algorithms described in the following subsec-
tions are instantiations of a state transition system that processes nodes of the
following form:

Definition 2.1 (Nodes). A node is either a root node 〈P 〉 where P is an atom,
or a tuple (with at least 3 fields) of the form 〈P ; �Q; S; ...〉, where the atom P is
called the index, the (possibly empty) sequence of atoms �Q the subgoals, and the
atom S the partial answer. If the list of subgoals �Q is empty, a node is called
an answer node with answer S. Otherwise it is called a goal node, and the first
atom in �Q is its current subgoal.

Intuitively, the list of subgoals �Q contains the atoms that still have to be solved
for the goal P . The subgoals are solved from left to right, hence the head of the
list is the current subgoal. The current subgoal can be resolved against another
answer node, which may entail instantiations of variables which will narrow down
the partial answer S. The partial answer may eventually become a proper answer
if all subgoals have been solved.

Note also that tuples may have more than three fields, which allows us to
instantiate the algorithm scheme to perform various computational tasks. In its
standard form, it implements ordinary deduction as outlined in Section 2.2. We
may add an additional field �n containing the nodes which justify the derivation
of the current node; this will allow us to reconstruct proof graphs in Section 2.3.
Lastly, we will introduce a field Δ containing atoms which were just assumed to
hold when deriving the current node, and thus yield an abductive algorithm in
Section 2.4.

Furthermore, the algorithm makes use of two tables:

Definition 2.2 (Answer and Wait Tables). An answer table is a partial
function from atoms to sets of answer nodes. A wait table is a partial function
from atoms to sets of goal nodes.

We denote the answer and wait tables in the algorithm by Ans and Wait, re-
spectively. The set Ans(P ) contains all answer nodes pertaining to the goal 〈P 〉
found so far. The set Wait(P ) contains all those nodes whose current subgoal is
waiting for answers from 〈P 〉. Whenever a new answer for 〈P 〉 is produced, the
computation of these waiting nodes is resumed.

The algorithm is given in Table 1 as a transition system defined by a rela-
tion → on states of the following form:
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Table 1. Generic tabling algorithm

(root) ({〈P 〉} � N , Ans, Wait) −→ (N ∪ N ′, Ans, Wait)
if N ′ = generateP(P )

(ans) ({n} � N , Ans, Wait) −→ (N ∪ N ′, Ans[P �→ Ans(P ) ∪ {n}], Wait)
if n is an answer node with index P

� n′ ∈ Ans(P ) : n 	 n′

N ′ =
⋃

n′′∈Wait(P ) resolve(n′′, n)

(goal1) ({n} � N , Ans, Wait) −→ (N ∪ N ′, Ans, Wait[Q′ �→ Wait(Q′) ∪ {n}])
if n is a goal node with current subgoal Q

∃ Q′ ∈ dom(Ans) : Q 	 Q′

N ′ =
⋃

n′∈Ans(Q′) resolve(n, n′)

(goal2) ({n} � N , Ans, Wait) −→ (N ∪ {〈Q〉}, Ans[Q �→ ∅], Wait[Q �→ {n}])
if n is a goal node with current subgoal Q

∀ Q′ ∈ dom(Ans) : Q 
	 Q′

Definition 2.3 (States). A state is a triple (N , Ans, Wait) where N is a set
of nodes, Ans is an answer table, and Wait is a wait table.

A state of the form ({〈P 〉}, {P 	→ ∅}, {P 	→ ∅}) is an initial state. A state S
is a final state iff there is no state S′ and such that S −→ S′.

We have left the description of the algorithm generic with respect to the following
choices:

1. the structure of tuples (beyond the first three fields)
2. the subsumption relation � on answer nodes
3. the procedure resolve(n, n′)
4. the procedure generateP (P )

Intuitively, if n � n′ (n is subsumed by n′) holds, then the answer node n provides
no more information than n′; in the algorithm, we can thus discard n and poten-
tially ensure that the answer set is kept finite. The procedure resolve(n, n′) is
intended to take a goal node n and an answer node n′ and combine the current
subgoal of n with the answer provided by n′ to get a new node with a simpler
subgoal. The procedure generateP(P ) is intended to generate a set of tuples
for a given query 〈P 〉 by resolving P against the rules of program P .

Starting in an initial state, rule (root) generates answer and goal nodes for a
query 〈P 〉. Answer nodes are processed by (ans) which inserts them into Ans(P )
if they are not subsumed by the answers already present there; likewise they are
resolved against all nodes currently waiting for an answer to P . Goal nodes are
either handled by (goal1) or (goal2), depending on whether the current subgoal
is subsumed by an atom in the domain of the answer table. If it is, the already
existing answers to that atom can be reused for the current subgoal, and the
goal node is added to the wait table in (goal1). Otherwise, (goal2) spawns a new
root node, and initializes the answer and wait tables.
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2.2 Deductive Policy Evaluation

In its simplest instantiation, the algorithm performs ordinary deduction, i.e.
starting in an initial state with root node 〈P 〉 it will terminate in a state where
Ans(P ) represents all instantiations of P which are deducible from the policy
P . We obtain this instantiation by defining:

1. Tuples are of the form 〈P ; �Q; S〉.
2. 〈P ; [ ]; S〉 �D 〈P ; [ ]; S′〉 iff S � S′.
3. Let n = 〈 ; [ ]; Q′〉 be an answer node, and Q′′ a fresh renaming of Q′.

resolveD(〈P ; [Q, �Q]; S〉, n) =
{

{〈P ; �Qθ; Sθ〉} if θ = mgu(Q, Q′′) exists,
∅ otherwise

4. generateDP(P ) =
⋃

(Q← �Q)∈P resolveD(〈P ; [Q, �Q]; Q〉, 〈P ; [ ]; P ′〉)
where P ′ is a fresh renaming of P .

The subsumption relation �D causes all answer nodes to be discarded whose
partial solutions are “more instantiated” and therefore less general than already
existing answers.

Example 2.4. The following policy allows the file Foo to be read by Bob and
every employee who is associated with any work group (in particular, Alice):

canRead(x, Foo) ← isEmployee(x), inWorkgroup(x, y).
canRead(Bob, Foo).
isEmployee(Alice).
inWorkgroup(Alice, WG23).

Suppose the algorithm is started in an initial state with query 〈canRead(z, Foo)〉.
The only possible start transition is (root), thus generateDP(canRead(z, Foo)) is
called and produces a goal node

n0 ≡ 〈canRead(z, Foo); [isEmployee(x), inWorkgroup(x, y)]; canRead(x, Foo)〉

and an answer node 〈canRead(z, Foo); [ ]; canRead(Bob, Foo)〉. Eventually, the goal
node will be resolved against the last two facts in the policy to yield a second an-
swer 〈canRead(z, Foo); [ ]; canRead(Alice, Foo)〉. The algorithm terminates with
no further answers.

2.3 Constructing Proof Graphs

A simple extension of the above instantiation reconstructs the proof graphs for
every answer in Ans(P ):

1. Tuples are of the form 〈P ; �Q; S;�n;Cl〉, where Cl is a clause in P and �n is a
sequence of answer nodes called child nodes.

2. 〈P ; [ ]; S; ; 〉 �G 〈P ; [ ]; S′; ; 〉 iff S � S′.
3. Let n = 〈 ; [ ]; Q′; ; 〉 be an answer node, and Q′′ a fresh renaming of Q′.

resolveG(〈P ; [Q, �Q]; S;�n;Cl〉, n) =

⎧⎨
⎩

{〈P ; �Qθ; Sθ; [�n, n];Cl〉}
if θ = mgu(Q, Q′′) exists,

∅ otherwise



90 M.Y. Becker and S. Nanz

�� ��

�� �	
canRead(Alice, Foo)

�� �����������������
�� canRead(x, Foo) ← isEmployee(x), inWorkgroup(x, y)

�� ��

�� �	
isEmployee(Alice)

�� ��

�� �	
inWorkgroup(Alice, WG23)

Fig. 1. Proof graph related to Example 2.4

4. Let P ′ be a fresh renaming of P .

generateGP(P ) =
⋃

(Q← �Q)∈P resolveG(〈P ; [Q, �Q]; Q; [ ];Cl〉, 〈P ; [ ]; P ′; [ ];Cl〉)

When resolving a goal against an answer node, the answer node is inserted as a
new child node, as justification for the resolution step. In order to reconstruct
the proof graph, an answer node is interpreted to have edges pointing to each
of its child nodes and an edge pointing to the rule Rl which has been used to
derive that particular answer. Figure 1 shows a proof graph for the derivation
of canRead(Alice, Foo) in Example 2.4.

Proof graphs are useful for auditing and explaining positive access decisions.
If the predicates are associated with meta-information on how they can be trans-
lated into natural language, the proof graph could also be represented as a sen-
tence such as “Alice can read Foo because Alice is an employee and Alice is in
workgroup WG23”.

2.4 Abductive Policy Evaluation

In our setting, the term abduction relates to the following problem. Given an
atom P and a policy P , find all sets A of atoms such that P is deducible from
P augmented by A. The set A is called an abductive solution for query P , and
we require that the predicate names occurring in A are from a given set of
abducible predicate names. The choice of the abducibles usually depends on the
application domain and the kind of analysis we want to perform. In many cases,
we are interested in all possible abductive solutions, so we specify all predicate
names in P to be abducible. We define A to be the set of all ground instantiations
of abducible predicates.

In the context of decentralized authorization, the parameters of the abduc-
tive solution may be unknown and may thus have to be left uninstantiated. For
example, the solution could specify a delegation chain where the identities of
the intermediate delegators cannot be fixed a priori. Therefore, the abductive
solutions we are interested in may contain variables that can be arbitrarily in-
stantiated; this is sometimes referred to as floundering abduction. This way,
each solution can represent an infinite number of ground solutions. We can pro-
vide a relatively simple algorithm to solve the floundering abduction problem
(compared to e.g. [13,14]) mainly because our policies are monotonic.

The generic tabling scheme is instantiated as follows:

1. Tuples are of the form 〈P ; �Q; S; Δ〉, where Δ is a set of atoms called the
residue.
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2. 〈P ; [ ]; S; Δ〉 �A 〈P ; [ ]; S′; Δ′〉 iff |Δ| ≥ |Δ′| and there exists a substitution
θ such that S = S′θ and Δ ⊇ Δ′θ.

3. Let n = 〈 ; [ ]; Q′; Δ′〉 be an answer node, and Q′′, Δ′′ fresh renamings of
Q′, Δ′.

resolveA(〈P ; [Q, �Q]; S; Δ〉, n) =

⎧⎨
⎩

{〈P ; �Qθ; Sθ; Δθ ∪ Δ′′θ〉}
if θ = mgu(Q, Q′′) exists,

∅ otherwise
4. generateAP,A(P ) =

⋃
(Q← �Q)∈P resolveA(〈P ; [Q, �Q]; Q; ∅〉, 〈 ; [ ]; P ; ∅〉) ∪

{〈P ; [ ]; P ; {P}〉 : P is abducible}

The main idea is thus to extend tuples with a residue Δ, containing atoms
which are just assumed to hold in the process of the algorithm. Such atoms are
initially inserted into the residue by generateAP,A whenever an abducible goal
〈P 〉 is encountered. They are then propagated using resolveA such that for each
hypothetical answer S obtained, Δ expresses which atoms must be added to P
in order to be able to deduce it.

In general, there are infinitely many abductive solutions: by monotonicity,
any extension of an abductive solution is trivially also an abductive solution.
Clearly, the abductive algorithm should only consider solutions that are not
simple supersets of already existing ones. Similarly, we are not interested in a
new solution that is an instantiation of (and thus less general than) an already
existing one. The subsumption relation �A makes sure that such “uninteresting”
answers are not considered.

The correctness of the algorithm is formalized by the following theorems.

Theorem 2.5 (Soundness). If (N , Ans, Wait) is reachable from an initial
state S0 then for all P ∈ dom(Ans): 〈P ′; [ ]; S; Δ〉 ∈ Ans(P ) implies that for
all substitutions ϑ such that all elements of Δϑ are ground it holds that P = P ′,
Sϑ � P , and Sϑ ∈ T ω

P∪Δϑ(∅).

Theorem 2.6 (Completeness). If Sf ≡ (N , Ans, Wait) is a final state reach-
able from an initial state S0 then for all P ∈ dom(Ans): S ∈ T ω

P∪A(∅) and S � P
implies that there exists a substitution ϑ, an atom S′, and a residue Δ such that
S′ϑ = S, Δϑ ⊆ A, and 〈P ; [ ]; S′; Δ〉 ∈ Ans(P ).

Example 2.7. Consider again the program of Example 2.4, but assume that
it no longer contains the atom inWorkgroup(Alice, WG23). Furthermore, suppose
that both isEmployee and inWorkgroup are abducible predicate names.

For query 〈canRead(z, Foo)〉 the procedure generateAP,A executes as the one
described in Example 2.4, and produces in particular the goal node n0. Using
(goal2), a new root 〈isEmployee(x)〉 will be inserted. The call to the function
generateAP,A(isEmployee(x)) produces answer nodes

〈isEmployee(x)); [ ]; isEmployee(Alice); ∅〉
〈isEmployee(x); [ ]; isEmployee(x); {isEmployee(x)}〉
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Upon termination of the algorithm, Ans(canRead(z, Foo)) contains answer node
which exhibit the following answer/residue pairs:

(canRead(Bob, Foo), ∅)
(canRead(Alice, Foo), {inWorkgroup(Alice, y)})
(canRead(x, Foo), {isEmployee(x), inWorkgroup(x, y)})

The first one does not require any assumptions, and the other two give sets
of hypothetical assumptions in order for answers of a particular shape to hold.
For example, to grant read access for Alice, she would have to show that she
is member of some work group y. All other possible abductive solutions are
subsumed by these three answers.

3 Termination Conditions

The abduction algorithm from Section 2.4 is guaranteed to terminate if there
is a finite set of answers such that every valid answer would be subsumed by
some element in the set. However, there are cases in which every complete set
of answers is infinite and the algorithm does not terminate.

Example 3.1. Consider the policy

canRead(user,file) ← deleg(delegator, user,file), canRead(delegator,file).

In this example, canRead(x, y) indicates that principal x has read access to re-
source y, and deleg(x, y, z) indicates that principal x delegates read access for
resource z to principal y. This policy implements a simple variant of discre-
tionary access control: users can delegate read access if they have read access
themselves. The abductive query canRead(Alice, Foo) has an infinite set of an-
swers with growing residues:

{canRead(Alice, Foo)}
{deleg(x1, Alice, Foo), canRead(x1, Foo)}
{deleg(x1, Alice, Foo), deleg(x2, x1, Foo), canRead(x2, Foo)}
{deleg(x1, Alice, Foo), deleg(x2, x1, Foo), deleg(x3, x2, Foo), canRead(x3, Foo)}
. . .

The answers do not subsume each other: being able to provide the missing facts
corresponding to one of these answer does not imply being able to provide the facts
corresponding to any other answer. Clearly, the algorithm does not terminate.

There are different ways to approach this problem. If the algorithm is used
for debugging policies or for explaining access denials to users, non-termination
may not be a serious problem, if the answers can be returned one by one. Ideally,
the answers would be returned in some meaningful order, e.g. sorted by simplic-
ity. This can be achieved by serializing the non-deterministic algorithm into a
deterministic one with a fixed order of transitions.

Sometimes, however, it is important to ensure both termination and com-
pleteness. For example, the algorithm could be used to verify that there is no
abductive answer of a certain form; this would require a complete set of abduc-
tive solutions. This section discusses various strategies of ensuring termination.
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3.1 Subsumption Weakening

One such strategy is to replace the subsumption relation �A by a weaker re-
lation. Intuitively, a weaker subsumption relation has the effect of filtering out
more answers in the (ans)-transition; in other words, fewer answers are deemed
“relevant” or “interesting”. As long as this alternative subsumption relation
enjoys a sort of compactness property (essentially that it is not possible to in-
definitely keep adding new answers that are not subsumed) then the algorithm
is guaranteed to terminate.

Theorem 3.2. Let � be a partial order on nodes such that in every infinite
sequence of nodes n1, n2, ... containing only a finite number of distinct constants,
there are nodes ni and nj with i < j and nj � ni. If the subsumption relation
�A on nodes in the algorithm is replaced by � then all transition paths starting
from an initial state are of finite length.

The following definition specifies two examples of subsumption relations that
satisfy the condition of the theorem.

Definition 3.3. Let n = 〈P ; [ ]; S; Δ〉 and n′ = 〈P ; [ ]; S′; Δ′〉. Then n �0 n′ iff
S � S′ and the predicate names occurring in Δ′ are a subset of the predicate
names occurring in Δ. Let M be a positive integer. Then n �M n′ iff |Δ| > M
or n �A n′.

The first relation, �0, is useful if one is only interested in the predicate names
of the missing facts, not their parameters. For example, a security administrator
may be interested in the question “is it possible for Alice to gain read access
to Foo if someone, no matter who, is granted write access?”. Here, the admin-
istrator is only interested in whether an abductive answer containing canWrite
exists.

The second relation, �M , is parameterized on a constant M and filters out
answers with more than M missing facts. This method could be used in the non-
termination example above to ensure termination by cutting off the delegation
chain at a certain maximum length.

3.2 Static Termination Analysis

The advantage of weakening the subsumption relation is a strong termination
guarantee for all possible policies, queries and sets of abducibles. The downside
of this approach is a correspondingly weaker completeness result: completeness
only holds with respect to the subsumption relation.

We now develop an alternative approach that guarantees termination under
the original subsumption relation, as long as the policy satisfies a certain prop-
erty. To gain an intuition for this property, consider the necessary conditions for
non-termination. The algorithm does not terminate only if there is an infinite
sequence of abductive answers, each of which is not subsumed by any previous
answer. This is only possible if the residues Δ are growing unboundedly. Since
the answers can only contain the (finitely many) predicate names and constants
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occurring in the policy and the query, it must be the case that there is a predi-
cate name p such that for all integers N there is always a residue in the sequence
in which there are more than N occurrences of p. But this is only possible if the
policy is recursive.

Verbaeten [15] provides a sufficient termination condition for general abductive
logic programs that requires non-recursivity. But recursion plays an important
role in authorization policies, for example for specifying delegation. Fortunately,
due to the subsumption check, recursion does not always lead to non-termination.
In order for the sequence to pass the subsumption condition, the p-atoms in the
residues must form increasingly bigger structures that are connected via an un-
bounded number of shared variables. In Example 3.1, we can see that non-
termination stems from the recursive canRead condition, and furthermore the
sharing of the variable delegator with a second body predicate which is not in the
head of the clause: this essentially causes the creation of an increasing linked struc-
ture of deleg atoms with newly created, shared variables.

This leads to a necessary condition for non-termination, the negation of which
is then a sufficient condition for termination. The following definition is used in
the formalization of the condition.

Definition 3.4. A clause R ← �R is an unfolding of a clause P ← P1, ..., Pi, ..., Pn

if there exists a clause Q ← �Q ∈ P such that Pi and Q unify with mgu θ, and
R = Pθ and �R = (P1, ..., Pi−1, �Q, Pi+1, ..., Pn)θ. A clause C can be unfolded to
yield a clause C′ if C′ is obtained from C by 0 or more unfolding transformations.

Theorem 3.5. Let P be a set of clauses such that no clause can be unfolded to
yield a clause with the following property:

– The head predicate occurs in a body atom P .
– It has a second body atom Q that is abducible and shares a variable with P

which does not occur in the head.

Then all transition paths starting from an initial state are of finite length.

The condition in Theorem 3.5 is decidable; in fact, a static analyzer for check-
ing it can be written in Prolog in less than a hundred lines. The static analyzer
could then be run before an abductive query, and if the condition is not satisfied,
the user could be warned that evaluation of the query may not terminate. Pre-
liminary experiments have shown that the condition gives a relatively accurate
approximation for non-termination. In particular, many recursive policies can
be shown to guarantee termination.

4 Application Scenarios

This section illustrates three possible applications of the abduction algorithm in
the area of policy-based access control.
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4.1 Explaining Access Denials to Users

In current access control systems, the user is often left without guidance if access
is denied. Consider the following policy of some company:

canRead(x, /workgroup23/) ← isEmployee(x), inWorkgroup(x, WG23).
canRead(x, /workgroup23/) ← isManager(x).

Suppose employee Alice submits the credential isEmployee(Alice) upon log-
on to the authorization system, but forgets to submit the credential that she is
member of workgroup WG23. If she then tries to access the folder /workgroup23/,
she will just get the answer “access denied”. Using the abduction technique, the
produced residues {inWorkgroup(Alice, WG23)} and {isManager(Alice)} could
be used to construct the more helpful message “access would have been granted
if you had shown that you are a member of work group WG23 or that you are
a manager”.

If parts of the policy itself are considered confidential, the abductive solutions
can be filtered by a disclosure meta-policy. Disclosure policies have been studied
extensively in the area of automated trust negotiation (e.g. [16,17,18]). A simpler
(but slightly less fine-grained) approach would be to tag particular atoms in
clause bodies that must not be abduced.

4.2 Administration of Authorization Policies

The next example illustrates the use of the abduction algorithm in a policy
analysis and debugging tool. Consider the following example rules that are part
of a policy of an electronic health record (EHR) service:

treatingClinician(cli, pat) ← (1)
roleMember(pat, Patient), roleMember(cli, Clinician), consent(pat, cli).

canReadEHR(cli, pat, subj) ← (2)
treatingClinician(cli, pat), nonSensitive(subj).

canReadEHR(cli, pat, Psych) ← (3)
treatingClinician(cli, pat), isCertifiedPsychiatrist(cli).

canReadEHR(pat, pat, subj) ← (4)
roleMember(pat, Patient), nonSensitive(subj).

Rule (1) specifies that a clinician cli is a treating clinician of patient pat if the
patient has given consent to treatment. The predicate canReadEHR(x, pat, subj)
is used to check if principal x is permitted to read patient pat’s record items on
subject matter subj, where subject matters range over categories such as psychi-
atry, cardiology, radiology etc. Some subject matters, such as Psych, are deemed
sensitive and have stricter access requirements. The predicate nonSensitive(subj)
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defines the range of subjects that are deemed non-sensitive. Rule (2) allows
clinicians to read their patients’ record items on non-sensitive subjects. Rule (3)
specifies that only psychiatrists are permitted to access their patients’ psychiatric
data. Finally, Rule (4) permits patients to view their own data, but only the items
regarding non-sensitive subject matters.

The rationale behind Rule (4) is that patients should not be allowed to access
data that could potentially distress them if read without professional guidance. In
particular, they should not be able to autonomously access their psychiatric data.
In order to check if the policy really implements the intended behavior, the se-
curity administrator can issue the abductive query canReadEHR(pat, pat, Psych)
to see if there is a way for patients to access their own psychiatric data.

Assuming that all predicates apart from canReadEHR and treatingClinician are
abducible, we obtain an answer with residues

{roleMember(pat, Patient), nonSensitive(Psych)}.

This is easily dismissed as unproblematic if the administrator can verify that
there is no way of inserting a fact nonSensitive(Psych). But we also get a second
answer with residue

{roleMember(pat, Patient), roleMember(pat, Clinician),
isCertifiedPsychiatrist(pat), consent(pat, pat)}.

This answer is more troublesome: a patient can read what her psychiatrist has
written if she happens to be a certified psychiatrist too and has given consent
to treat herself. This may or may not be regarded as a bug in the policy; but in
any case, as there are no further abductive answers, and by completeness and
termination of the algorithm, it is guaranteed that there are no further loopholes
in the policy.

4.3 Automated Delegation

The following scenario takes place in a multi-domain grid computing environ-
ment. Alice is a user who wishes to submit a job to be computed on a grid
compute cluster. She knows that during the execution of her job, a node from
the compute cluster will have to access her file alice.dat stored on a file
server in a different domain. Therefore, at some point, an authorization query
of the form canRead(Node, alice.dat) will be evaluated on the file server. Sup-
pose the file server’s policy contains the rule from Example 3.1 and the fact
canRead(Alice, alice.dat).

As Alice’s job may take many days to complete, she wants to know in advance
which delegation credentials she has to submit to the file server, so she sends the
abductive query canRead(node, alice.dat) to the server. Her query contains a
variable node in place of the node that will eventually access her file, because
she cannot know its identity in advance.
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The first returned answer is the trivial answer where node is instantiated to
Alice and the residue is empty. The second answer is uninstantiated and has
the singleton residue {deleg(Alice,node, alice.dat)}. This would require direct
delegation to the node, which is not convenient as its identity is not known to
Alice. The third answer has residue

{deleg(Alice, x, alice.dat), deleg(x,node, alice.dat)}.

This answer represents a delegation chain of depth 2 and is the most useful in this
situation, because Alice knows the identity of the compute cluster’s scheduling
service. Thus she can submit a delegation credential

deleg(Alice, Scheduler, alice.dat)

to the scheduling service along with her job and a partially instantiated missing-
credential “template”

{deleg(Scheduler,node, alice.dat)}.

The service will then execute the job on some node, e.g. Node42, passing along
Alice’s delegation credential as well as a newly created (or cached) credential
instantiated from the template, namely deleg(Scheduler, Node42, alice.dat).
When the node eventually requests access to Alice’s file on the file server, it
submits both Alice’s and the scheduler’s delegation credentials to support the
request. Access is then guaranteed to be granted as long as the file server’s policy
has not been changed in the meantime.

5 Discussion

Related work. There has been very little research on improving the usability of
authorization systems in the case of access denial. The Know system [19] can
provide helpful feedback to the user in the form of a list of conditions under which
the policy allows access. A separate disclosure policy restricts the information
revealed by the feedback. However, the authors only consider policies of rather
limited expressiveness, namely those that can be written as propositional boolean
formulas; hence the feedback can be computed using Ordered Binary Decision
Diagrams (OBDDs).

Bonatti et al. [20] have developed a framework for explaining both positive
and negative access decisions in the context of a Datalog-based authorization
language. For explaining access denials, they essentially compute a tabled failed
proof graph (called explanation graph) for the query. Users can navigate through
the graph, which is represented in controlled natural language, to see where the
proof failed. To keep the overhead as low as possible, they do not attempt to
search for the missing facts that would complete the failed proof. We have shown
in this paper that we can compute the sets of missing facts while maintaining a
low implementation overhead.
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Koshutanski and Massacci [18] employ abduction for interactive credential
retrieval: if the credentials presented by the user are not sufficient to allow ac-
cess, the service computes a set of missing credentials (filtered by a disclosure
policy) and returns it to the user who can either supply the required credentials
or decline, in which case the process iterates. This process terminates because
it is assumed that the set of constants that could be used as credential pa-
rameters is finite and known to the service in advance. The policy can then be
reduced to propositional (variable-free) formulas. However, we believe that this
is an unreasonable assumption, particularly in decentralized applications where
authorization is based on attributes as the identities of principals in delegation
chains are not known a priori.

Becker and Nanz [21] have developed an algorithm for analyzing authoriza-
tion policies in which facts (such as current role activations) can be added and
removed dynamically by commands (such as activating or deactivating a role).
The paper presupposes a function for computing sufficient preconditions for ex-
ecuting such commands, but does not explain how it can be implemented. The
abductive procedure presented in this paper could be used to implement the
required function.

Implementation. Prototypes of the abductive algorithm and the static termina-
tion analysis have been implemented in OCaml and in XSB Prolog, respectively.
The SecPAL system [5] supports proof graph generation based on the algorithm
presented here. Current and future work on the SecPAL system will include
integration of tools based on our abduction algorithm. As SecPAL is compiled
into Datalog with constraints, the implementation will also have to handle con-
straints. Extending the abduction algorithm with constraints is relatively simple,
assuming the existence of satisfiability and subsumption checking operations. In
essence, tuples are extended to include a constraint on variables occurring in
the predicate and the residue. In the resolution step, the conjunction of the
constraints from the two input nodes is computed and checked for satisfiability.
Furthermore, the subsumption check is extended to also check if the constraint
from one node is subsumed by the constraint from the other node.

Conclusion. Declarative authorization languages can increase the flexibility, scal-
ability, and manageability of access control systems. However, they are not with-
out their own usability problems, as many authorization policies are intrinsically
complex. To alleviate this complexity, tools are needed for facilitating access au-
diting and review, meaningful user feedback, policy diagnosis and debugging,
and automated credential retrieval. In this paper, we have shown how a tabled
resolution algorithm for policy evaluation can be extended to create proof graphs
and to compute sets of missing proof facts using abduction. For the abductive
algorithm, we have explored methods for guaranteeing termination and complete
answers. The algorithms are general enough to be applicable to a wide range of
existing systems. We believe that tools based on these algorithms will help the
declarative policy approach gain wider adoption in the industry.
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Abstract. Unification, one of the key processes underlying logic program-
ming (LP), provides a powerful mechanism for assembling and disassem-
bling structures, lists in particular, by matching patterns. In recent work, we
showed how spreadsheets can be enhanced by adding a visual form of LP in
which lists, the  fundamental structures  of LP, are  replaced  by  rectangular 
arrays, the fundamental structures of spreadsheets. The benefits include en-
hanced programmability and a way to specify high level templates for spread-
sheet structures. Here, we focus on the structure of arrays, and describe the
array unification algorithm underlying our current implementation.

Keywords: Spreadsheet, logic programming, array, unification.

1 Introduction

Spreadsheets  first  appeared in  1979  with the  introduction  of  VisiCalc on the Apple
II, contributing significantly to the rapid adoption of personal computers [2]. Spread-
sheets were perhaps the first applications to allow non-technical users to solve problems
of importance to them in their work and daily lives. Since spreadsheets present a
straightforward visualisation of calculations organised on ledger-like sheets, they were
ideally suited to the graphics-based PCs which arrived in the mid-80s, accelerating the
proliferation of computer use by non-technical people. As a result, spreadsheet languag-
es, of which Microsoft Excel is the prototypical example, are among the most successful
and widely used end-user programming languages.

Unfortunately, the characteristics of spreadsheets that have made them popular,
have also made them dangerous. Companies which would normally invest heavily in
thoroughly engineered, reliable tools for important tasks, began to entrust spreadsheets,
cobbled together by nonprogrammers, with complex and critically important calcula-
tions. Spreadsheets, however, were never intended for this purpose. They provide sim-
plistic and cumbersome programming capabilities, and no sound software engineering
tools or methodology. As a result, not only are spreadsheets among the most widely
used programming tools, but spreadsheet programs are among the most likely to contain
errors.

Researchers have recently turned their attention to these problems, at least partly
motivated by widely publicised instances of costly accounting errors due to faulty
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spreadsheets, and legislation assigning liability for these errors to company managers
and directors [12]. This work focusses on testing and debugging methodologies and
tools [8,15], higher level design of spreadsheet structures [1,7,11], and improved pro-
grammability [3,13,19]. 

Since the mid-80s, various combinations of logic programming (LP) and spread-
sheets have been proposed. Some representative examples are as follows. In NEXCEL,
an array can represent a predicate defined by a set of clauses, the bodies of which consist
of literals referring to other arrays as predicates [4]. Similarly, an array in LogiCalc can
be a table defining a relation, and cells can contain queries, lists or any other terms [10].
In XcelLog, cells contain expressions which are translated into clauses for execution by
an underlying LP execution mechanism [14]. In two other early systems, spreadsheets
provided an interface for displaying the values of variables instantiated by a logic pro-
gram separate from the sheet [16,18]. In these systems, the normal data flow computa-
tional model of spreadsheets is replaced with some form of LP, resulting in a program-
ming environment significantly different from that provided by Microsoft Excel and
similar products. They do not, therefore, help to alleviate the shortcomings of spread-
sheets discussed above.

Although rectangular arrays of cells are fundamental components in the structure of
all but the most trivial spreadsheets, they are not directly supported by common spread-
sheet languages, and must be managed by the user according to some conventions that
he or she has established. This is analogous to assembly languages, in which high level
structures such as while loops are not provided, and must be constructed from individual
instructions according to some pattern. In a spreadsheet, an array is established by fill-
ing the cells in a rectangle with contents that are related to each other in some way, and,
if they are formulae, possibly refer to the contents of cells in another array. Hence, to a
large extent, spreadsheet programming involves specifying the structure of arrays, rela-
tionships between arrays and computations that fill arrays with values. Similarly, logic
programming involves specifying the structure of terms, relationships between terms,
and computations that bind variables occurring in terms. Based on this analogy, L-
sheets, a recently proposed extension to spreadsheets, incorporates a form of LP in
which unification of terms is replaced by unification of arrays [6]. In contrast to previ-
ous spreadsheet/LP combinations, L-sheets delivers the following benefits:

• A visual, high-level specification of spreadsheet structure.
• Enhanced programmability.
• The existing “formula-in-cell” model, familiar to current users, is preserved.
• User-defined abstractions are built in the sheet interface, allowing for a smooth

transition from novice to expert user.

The work reported here focusses on issues that have arisen during the implementa-
tion  of an  L-sheets  prototype,  array  unification in  particular. Section 2 informally 
describes  L-sheets  via a sequence of examples which  illustate both typical use in a 
business setting, and  more  unusual applications. In Section 3, we describe the unifica- 
tion of arrays by presenting the Prolog implementation of the array matching algorithm 
which underlies the current prototype. We conclude with a discussion in Section 4 of
 the current state of this project and issues for future investigation. 
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2 L- heets

In this section, we present several examples to illustrate the main features of L-sheets.
The reader is encouraged to consult [6] for a more formal description. An L-sheets ap-
plication consists of a collection of worksheets, like the familiar Microsoft Excel work-
sheets, and program sheets. Program sheets contain definitions as described below.
Cells in a worksheet can contain formulae possibly referring to other cells. In addition,
definitions from program sheets can be applied to a worksheet, resulting in formulae be-
ing added to the content of some cells.

2.1 Templates
This example, from Erwig et al. [7], illustrates what we envisage to be one of the most
common uses of L-sheets, and involves specifying the structure of a budget worksheet,
an example of which is shown in Figure 1. This worksheet is an example of a family of
worksheets in which blocks of three columns headed Qnty, Cost and Total, each con-
taining data for one year, are repeated as many times as necessary. Similarly, rows for
budget items are repeated as necessary. Clearly, formulae in repeated cells and formulae
referring to repeated cells conform to a pattern.

Figure 2 depicts an L-sheets program sheet consisting of two definitions, budget and
years, which together specify the family of budget worksheets exemplified by that in
Figure 1. The budget definition has a single case, the head of which is a template named
budget, represented by a pale grey rectangle. The body of this case consists of a single
template, named years. Body templates are dark grey. Templates contain parameters,
which are arrays, drawn as grids similar to a worksheet grid. In our example, the budget

template has a single parameter, while the years template in the body of the case of the
budget definition has two.

A definition is analogous to a set of clauses defining a predicate in Prolog. In par-
ticular, a case corresponds to a clause, a template to a literal, and the parameters of a
template to the list of terms from which a literal is composed.

The structure of an array in a template is indicated by the colour of its grid lines. A
vertical grey line indicates that the width of the subarray in which the line lies is varia-
ble. For example, consider the array in the budget template. Although the subarray with

Fig. 1. Budget worksheet displaying formulae (from [7] p.299)
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the heavy outline labelled A is drawn with two columns, the line separating these col-
umns is grey, so the subarray A is variable in width. Similarly, grey horizontal lines in-
dicate variable height. With this is mind, we see that the array in the budget template has
one column, followed by a variable number of columns, followed by two columns. It
also has two rows, followed by a variable number of rows, followed by one row. Values
of subarrays are displayed when they are known. For example, the value of the 1x1 sub-
array at the left end of the second row is the string “Category”. The annotation F1 on
the 1x1 subarray at the bottom right corner is not part of the program. It has been added
to indicate that the subarray contains an Excel-like formula, as shown in the legend.

The definition budget specifies that an array is an instance of a budget worksheet if
it has the structure described in the previous paragraph and contents as shown, and the
subarrays named A and B have the structure and content specified by the definition
years. 

To apply this definition to a worksheet, the user selects a rectangular array of cells
in the sheet to correspond to the parameter (Figure 3a). A (virtual) goal template named
budget is created with the selected array as its parameter. As in Prolog execution, this
goal template is unified with the head of the first (and only) case for budget. This in-
volves unifying the selected array with the parameter of the head template, using the al-
gorithm described in Section 3, which matches the structure of the two arrays and adds

Fig. 2. An L-sheets program defining a family of budget spreadsheets. The annotations F1, F2,…
are not part of the program, but have been added to indicate cells which contain formulae, shown
in the legend. (from [6]).
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rewritten to refer to the appropriate cells in the worksheet, then added to the content of
the bottom-right cell of the rectangular array selected in the worksheet. Since the second
column of the subarray B corresponds to column J in the sheet and stretches from row
5 to row 7, F1 is rewritten to SUM(J5:J7). Note that the syntax of formulae in a program
sheet differs from that of formulae in a worksheet. In particular, in a program sheet for-
mula a reference consists of a subarray name followed by row and column indices,
while a reference in a worksheet is to a named column and numbered row in the whole
sheet. Also the ↓ in the formula SUM(B1,2:B↓,2) denotes the last row of the referenced
subarray B. Note that the content of a cell in a worksheet or a subarray in a program

sheet is a set of formulae, rather than a single formula. This is because a cell is analo-
gous to a Prolog variable, which may be bound to several terms provided they are uni-
fiable, unlike cells in a normal spreadsheet, which are data flow variables subject to the
single-assignment rule [5]. If a cell contains several formulae, then they must all pro-
duce the same value, otherwise evaluation fails.

Fig. 3. Applying budget definition to a sheet

the contents of the subarrays of the parameter array of the head template to the corre-
sponding cells of the goal parameter array (Figure 3b). In particular, the formula F1 is
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(a) Selecting the parameter

(b) After unification.
The dotted outline and shaded areas have been added for explanatory purposes.

(c) Spreadsheet after execution, displaying formulae.



from the worksheet, indicated by shading, to which subarrays A and B were bound by
the unification. Execution then proceeds in a fashion analogous to Prolog.

The first case of years contains two rulers, used here to indicate that the second pa-
rameter of the head templates and the array E in the body template both have height H.
The black rectangle in the head of the second case of the years definition represents an
array which is 0 in at least one dimension. Also, if a subarray which is variable in one
or both dimensions contains a formula, then when the subarray is unified with an array
of fixed size, the formula is extended in the same way that a formula in Excel is extend-
ed; that is, by appropriately incrementing the indices of references in the formula. Note
that, in this example, formulae need not be evaluated during execution. Instead, they are
combined appropriately and eventually added to the content of cells in the worksheet.
We leave it to the reader to follow the example through to its conclusion, verifying that
the final state of the worksheet is as shown in Figure 3c. Note that execution proceeds
according to the normal Prolog execution order: that is, cases of a definition are tried in
the order in which they are listed, and failure causes backtracking.

2.2 Gaussian Elimination

Although L-sheets’ primary goal is to alleviate the reliability and robustness problems
of spreadsheets used in strategic applications (Section 1), it can be applied to other kinds
of programming tasks as well. This is illustrated by the next two examples, chosen to
highlight certain aspects of array unification, the focus of this paper.

Figure 4 depicts a definition gauss, and associated definitions triangularise and
backsubstitute, for solving simultaneous linear equations by Gaussian elimination with
partial pivoting, with which we assume the reader is familiar. The array labelled A in the
head of the first case of gauss must be bound to an n x n+1 array containing the coeffi-
cients and right-hand sides of the equations to be solved. The array C must be bound to
a 1 x n array for the solution vector.

The templates of the second case of triangularise contain several rulers, used here
to constrain array sizes. For example, the width of the first parameter of the triangularise

goal template is constrained to be one less than the width of the first parameter of the
head by ruler W. To improve efficiency, we could also add rulers to the array A in the
head of gauss to make the above-noted constraint on its dimensions explicit.

The first goal template of this case, with a striped background, no name, and arrays
containing only boolean valued expressions, is an example of a guard. During execu-
tion, the arrays in the guard must be instantiated to arrays of fixed size, and their formu-
lae extended as described above. The guard succeeds if all the formulae in each of its
arrays produce true. Note that $ in a program sheet formula has the same meaning as in
a worksheet formula: that is, it indicates the the following row or column index is not
incremented when the formulae is extended. The guard in this case specifies that the
leading coefficient of the equation represented by subarray B is greater than or equal to
the leading coefficient of any other equation, and not zero. If the guard succeeds, then
B is the pivot row.

The above execution step replaces the initial goal template with a years template,
derived from the body of the applied case, and containing the two rectangular arrays
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triangularise has n rows, then there are n ways of unifying the two arrays, so during ex-
ecution of this case, unification generates successive matches until one is approved by
the guard template. Note that execution of the guard template forces some formulae to
be evaluated during the execution. Formulae constructed for the result vector are, how-
ever, returned to the worksheet unevaluated, then evaluated in the usual way. This im-
plies that if the value of any cell corresponding to a coefficient in the set of equations is
changed, gauss must be re-executed, possibly depositing different formulae in the cells
of the result vector. This is in contrast to the example in Section 2.1, where no formulae
are evaluated, and changing a cell need not initiate re-execution.

2.3 Removing uplicate alues from an AV rrayD
In every  unification  in  the preceding  examples,  one of the arrays involved is of fixed
size, starting with the selection of rectangular arrays of cells of known size in the work-
sheet to correspond to the parameters of the gauss or budget. This may not always be
the case, however, as shown by the example in Figure 5. Two arrays of height 1 satisfy
the definition unique if every value in the first array occurs in the second exactly once.
When unique is applied to a worksheet, the user selects some cell in the sheet to corre-

Fig. 4. Gaussian elimination

This example illustrates that array unification, unlike term unification, is not
unique. If the array to be unified with the first array in the head of the second case of
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ues in the first array in the sheet, and is determined by execution. When execution be-
gins, the variable-size array from the sheet is unified with the second parameter of
unique, which is of variable size in the first and second cases.

3 Array Unification

As demonstrated in the last section, in L-sheets, computations operate on rectangular
structures assembled from smaller rectangular structures, which may be of variable
height or width. We note that the inclusion of variable-size subarrays in L-sheets is sim-
ilar to the inclusion of segment variables in LISTLOG lists [9]. As a result, unification
is nondeterministic in both systems.

To provide a firm footing for the unification algorithm explained below, we first
formalise the intuitive notion of “array” inherent in these examples.

A cell consists of content, a set of formulae which may be empty, and width and
height, each of which is either an integer, or an integer-valued variable constrained to
be at least 0. A row is a list of cells, all of the same height. The height of a row is the
height of its cells. The width of a row is the sum of the widths of its cells. An array is a
list of rows, the widths of which are constrained to be equal. A null array is an array, the
height or width of which is 0. Note that “cell” is a generalisation of the usual worksheet
cell, which is 1 in both dimensions.

If A and B are arrays, each with n rows, such that the heights of corresponding rows
of A and B are the same, we denote by A*B the array (A1B1,A2B2,…,AnBn), where jux-
taposition denotes list concatenation. Clearly * is associative. If A and B are arrays, then
B is a subarray of A iff there exist arrays C, D, E and F such that A = C(D*B*E)F.

As illustrated in the previous section, two arrays may have a subarray in common.
In Figure 4 for example, in the first case of backsubstitute, the array labelled A occurs
as a subarray of the first parameter of the head, and the first parameter of the body tem-
plate. This is analogous to two occurrences of the same variable in a Prolog clause, and
has analogous results. That is, any changes occurring during unification involving one
occurrence affect other occurrences.

Fig. 5. Removing duplicate values from a vector

variable-size array. The size of the rectangle occupied by the result depends on the val-
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3.1 Implementation
Our algorithm for array unification is implemented in SICStus Prolog with Constraint
Logic Programming (CLP) [17]. There are several advantages to this choice. First, be-
cause of similarities between array unification and term unification, certain features of
the former are automatically delivered by the latter. For example, horizontal or vertical
division of a subarray during unification affects all occurrences of the subarray. Second,
since array unification does not produce a unique solution, Prolog's execution mecha-
nism will search for a correct one. Third, CLP lends itself naturally to processing and
finding common instances of arrays, since a unification solution must satisfy dimen-
sionality constraints. Before presenting the algorithm, we describe the data structures
used to represent an array.

3.2 Array Structure

The representation of an array consists of three components, structure, constraints and
content map. We invite the reader to relate the following description of these to the ex-
ample in Figure 6.

The structure component is a list of rows, each a triple of the form (S,H,C) where
S is initially an uninstantiated variable; H is a variable representing the height of the row;
and C is a list of cells. 

Each cell is a triple of the form (S,W,C), where S is initially uninstantiated,; W is a
variable representing the width of the cell; and C is a variable that is associated with the
actual content of the cell via the content map.

The triples described above are called structure triples. The elements of a structure
triple are called the structure variable, size and content, respectively. We also use size
to mean the height of a row, or width of a cell, and the content of a cell triple as the con-
tent variable.

Note that in both kinds of structure triple, the structure variable S, if it is bound, is
bound to a binary tree. In the case of a row, this binary tree records the (vertical) divi-
sions of the row into smaller rows during unification. In the case of a cell, the tree
records both horizontal and vertical divisions (Figure 8).

The constraints component of an array is a set of integer constraints on the heights
of rows and widths of cells. It also includes equalities that ensure that the rows of the
array are the same width. 

The contents component of an array consists of a list of pairs of the form (C,L),
where C is the content variable of one of the cells in the array, and L is a possibly empty

[(RS1,RH1,[(CS1,CW1,CC1),(CS2,CW2,CC2)])
(RS2,RH2,[(CS3,CW3,CC3),(CS4,CW4,CC4)])]

Structure

{RH1 = 1, RH2 >= 0, CW1 = 1, CW2 >= 0, 
CW3 = 1, CW4 >= 0, RW1 = CW1 + CW2, 

RW2 = CW3 + CW4, RW1 = RW2}

Constraints

Content
[(CC1,[a])(CC2,[b])(CC3,[c])(CC4,[d])]

Fig. 6. Data structures for an array

Although the definition of array presented here differs slightly from that in [6], it is
equivalent to it, and more appropriate for implementation purposes.
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ecution, its contents component is appended to a master list called the content map. Dur-
ing unification, content variables of cells are bound together, and their entries in the
content map are merged. Also, as cells are divided horizontally or vertically during uni-
fication, new elements are added to the content map corresponding to the cells produced
by these divisions.

If the structure variable of a row or cell is bound only to other structure variables,
rather than to a compound term, the row or cell is said to be simple.

3.3 Structure Splitting

During unification, a simple row may be split vertically into two rows and a simple cell
horizontally into two cells. In this section, we describe the predicate split, listed in
Figure 7, and how it affects the data structures described above.

The first parameter of split is a flag indicating the direction; vert for row split-
ting, or horiz for horizontal cell splitting. The second parameter is a structure triple, as
described in the previous section, corresponding to the row or cell to be divided, while
the third and fourth are structure triples, T1 and T2, corresponding to the resulting rows
or cells. The last two parameters are input and output content maps.

In horizontal splitting, the unbound structure variable S is bound to the term
h(T1,T2), and the call to split_cell_content determines the contents of the two
new cells and updates the content map. In the process of propagating the formulae
stored in the undivided cell to the newly created cells, it is necessary to know the dis-
tance between them; this is obtained through the call to lower. In vertical splitting, S is
bound to the list [T1,T2], and the call to get_first vertically splits cells in the row,
by binding cell structure variables to terms of the form v(V1,V2) where V1 and V2 are
the structure triples of cells resulting from the vertical splitting. The call to get_first

both also updates the content map as it vertically splits the cells in the row. In both kinds
of split, the size variables of the three structure triples are appropriately constrained.

Clearly, after repeated splitting of a row, its structure variable is bound to a binary
tree. Similarly, the structure variable of a split cell is bound to a binary tree, but a some-
what more detailed one, recording both vertical and horizontal divisions, as illustrated

split(horiz,(S,W,C),(S1,W1,C1),(S2,W2,C2),MapIn,MapOut) :-
S = h((S1,W1,C1),(S2,W2,C2)),
{ W = W1+W2, W1 >= 0, W2 >= 0 },
lower(W1,Gap),
split_cell_content(horiz,C,C1,C2,Gap,MapIn,MapOut).

split(vert,(S,H,C),(S1,H1,C1),(S2,H2,C2),MapIn,MapOut) :-
S = [(S1,H1),(S2,H2)],
{ H = H1+H2, H1 >=0, H2 >= 0 },
get_first(vert,[(S,H,C)],[(S1,H1,C1),(S2,H2,C2)],MapIn,MapOut).

Fig. 7. The split predicate

list of the formulae the cell contains. When an instance of an array is created during ex-
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3.4 Array Matching

We now turn our attention to the unification algorithm, listed in Figure 9. The predicate
unify unifies two arrays, receiving as inputs their structure components, A1 and A2,
and MapIn, which is the input content map obtained by concatenating the content maps
of the two arrays. First, unify preprocesses A1 and A2 by applying get_first, pro-
ducing A1n and A2n, the first rows of which are simple. The output content map,
MapOut, records the contents of the cells in the arrays after unification.

The predicate match attempts to divide the rows and columns of the two arrays, as
conservatively as possible, to make the arrays structurally identical. The processing re-
quired is essentially the same for matching the lists of rows that constitute the arrays,
and for matching the lists of cells that constitute rows. Hence the same code accomplish-
es both. The first parameter of match is a flag indicating the processing direction; vert

for array matching, or horiz for row matching. The second and third parameters are
either array structures or rows, depending on the value of the first parameter.

To simplify the narrative, we describe the operation of match on rows; however,
the description also applies to the matching of arrays.

The base cases of match apply if one of the input rows is empty, and succeed if the
other is eliminable, that is, either empty or composed entirely of cells the widths of
which can be constrained to equal 0.

In the third clause of match, get_first is applied to each of the incoming rows,
transforming them into rows the first cells of which are simple. For purposes of discus-
sion, we will call these leading simple cells L1 and L2. The body of the clause then di-
vides into three subcases, dealing with the three possible ways of matching L1 and L2.
Figure 10 illustrates the first and third cases.

In the first case, L1 is split into two cells, L1a and L1b, say, the widths of L1a and L2
are constrained to be equal, their contents are unified (see below), and the height of L1b

Fig. 8. The binary tree of structure variables created by repeated splitting of a cell

in Figure 8, where the sequence of cell divisions on the left results in the binary tree of
structure variables on the right. 
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the widths of L1 and L2 are constrained to be equal, and the cell contents are unified. In
each case, the structure variables of matched cells are unified, so the cells are not only
equal in size, but are identical.

3.5 Unifying Content

As discussed in the previous section, after selecting two rows or cells to unify, match

unifies their content. This is achieved via a call to unify_content, in which the first

unify(A1,A2,MapIn,MapOut) :-
match(vert,A1,A2,MapTemp2,MapOut).

match(Type,A1,A2,MapIn,MapIn) :- 
empty(A1),!,
eliminable(A2).

match(Type,A1,A2,MapIn,MapIn) :- 
empty(A2),!,
eliminable(A1).

match(Type,A1,A2,MapIn,MapOut) :-
get_first(Type,A1,[(S1,W1,C1)|R1],MapIn,Map1),
get_first(Type,A2,[(S2,W2,C2)|R2],Map1,Map2),
!,
( split(Type,(S1,W1,C1),(S2,W2,C11),(S12,W12,C12),Map2,Map3),
  { W12 >= 1 },
  unify_content(Type,C11,C2,Map3,Map4),
  A1n = [(S12,W12,C12)|R1],
  A2n = R2
;
  split(Type,(S2,W2,C2),(S1,W1,C21),(S22,W22,C22),Map2,Map3),
  { W22 >= 1 },
  unify_content(Type,C21,C1,Map3,Map4),
  A2n = [(S22,W22,C22)|R2], 
  A1n = R1
;
  { W1 = W2 }, 
  S1 = S2,
  unify_content(Type,C1,C2,MapIn,Map4),
  A1n = R1,
  A2n = R2
),
match(Type,A1n,A2n,Map4,MapOut).

Fig. 9. The unify and match predicates

portions of the two rows, the first of which starts with the cell L1b. The second case is
analogous to the first, except the roles of the two rows are reversed. In the third case,
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is constrained to be at least one. In other words, L1 is forced to be strictly wider than L2,
and L2 is unified with the “prefix” of it. Matching then continues with the remaining



4  iscussion and uture irectionsDF

The error-proneness of spreadsheets and its widespread, devastating and expensive ef-
fects are well known, and have led in recent years to intense research on techniques and
tools for developing reliable spreadsheet programs. Among the approaches taken to this
problem are enhancing the programmability of spreadsheets, and providing a means to
specify spreadsheet structures. 

In recent work, we proposed improving the programmability of spreadsheets, not
by replacing the data flow semantics, but by augmenting it with a form of logic pro-
gramming in which unification of terms is replaced by unification of rectangular arrays
[6]. In the resulting language, L-sheets, the user can program worksheets in the usual
way, and in addition, apply definitions to them, where definitions are visual, sheet-
based logic programs, depicting operations that divide and assemble arrays.

Several advantages of this approach are outlined in [6]. First, while the “formula-
in-cell” model familiar to current spreadsheet users is preserved, user-defined abstrac-
tions are built within the same sheet interface. Hence the sharp division between the
end-user programmer and the expert is removed. Second, although manipulation of ar-
ray structures is the main focus, logic programs can be created that operate at the level
of individual cells, as in other logic programming spreadsheet languages that have been
proposed. Third, the array unification on which L-sheets is based provides a natural
means for specifying spreadsheet structures, as illustrated by the budget example in Sec-
tion 2.1.

It could be argued that logic programming is a niche computational model, appeal-
ing to a relatively small proportion of programmers, and therefore has little chance of

Fig. 10. Matching two non-empty rows

variable, removes them, and adds a single entry containing the concatenation of the con-
tent lists from the two removed entries.
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unify the content of rows, unify_content applies match with first parameter horiz

to the two rows. To unify cell contents, unify_content binds the content variables of
the cells together, finds the two entries in the content map corresponding to the content

parameter is vert or horiz, for unifying the content of rows or cells, respectively. To
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As  this  project  proceeds,  various  areas  will  be  further explored. Some  are as 
follows. 

Unification modes. In the budget example, formulae are not evaluated during unifica-
tion, but in gauss and unique they are. Further research is necessary to determine the
context in which a formula should be evaluated.

Re-execution of the worksheet. More than one definition may be applied to a worksheet,
overlapping each other,  and  interacting  with  formulae  inserted  by  the user. When a 
formula is added or deleted, or a definition applied or its application removed, parts of 

the  sheet need  to be re-executed.  In the simple data flow of  standard  spreadsheets, 
determining  the  parts  to  execute  is  straightforward,  but  not  in  the  case of L-sheets. 

This  problem  has  received  some  inconclusive  study [6], but further investigation is 
necessary. 

Triggering re-execution. Various actions will clearly trigger re-execution of a defini-
tion. For example, changing any value in the coefficient array will cause full re-execu-
tion of gauss, and resizing the worksheet parameter array will cause re-execution of
budget. A complete study of triggering is required.

Interface enhancements. Clearly, the worksheet array selected when applying budget

must have 3n columns for some non-zero n, and at least 3 rows. Such constraints should
be enforced as the user selects parameters. Formats such as font, cell colours and bor-
ders, should be included in program sheets, and transferred to the worksheet during uni-
fication. Such formats would become part of a cell’s content, so it will be necessary to
determine how to resolve conflicts when differing formats are applied to the same cell
via unification.

Debugging facilities. Various debugging tools and methodologies have been proposed
for standard spreadsheets [15]. Research is required to determine the extent to which
they can be incorporated into L-sheets. Since unification failure may occur several lev-
els deep when either the shape-matching of arrays or evaluation of cell contents causes
failure, tools for locating and rectifying errors due to such failures will be necessary, re-
quiring some kind of visualisation and traversal of execution.

In this paper we have focussed on implementation matters, and in particular, we
have described the array unification algorithm. The prototype of L-sheets is implement-
ed in two parts. The user interface, written in Java, communicates with the execution
mechanism written in SICStus Prolog. At the time of writing, it can deal with any ex-
amples with the characteristics of budget, gauss, and unique. It is not possible at present
to apply more than one definition to a sheet. 
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being accepted by spreadsheet users. However, there are significant differences be-
tween normal logic programming and L-sheets. In particular, unification has a much
more concrete (visual) foundation, the assembly and disassembly of arrays, which are
fundamental to spreadsheet structure. Nevertheless, the real utility of the approach can
be determined only by testing it with users.
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Abstract. We address the tension between software generality and per-
formance in the domain of simulations based on Monte-Carlo methods.
We simultaneously achieve generality and high performance by a novel
development methodology and software architecture centred around the
concept of a specialising simulator generator. Our approach combines
and extends methods from functional programming, generative program-
ming, partial evaluation, and runtime code generation. We also show how
to generate parallelised simulators.

We evaluated our approach by implementing a simulator for advanced
forms of polymerisation kinetics. We achieved unprecedented perfor-
mance, making Monte-Carlo methods practically useful in an area that
was previously dominated by deterministic PDE solvers. This is of high
practical relevance, as Monte-Carlo simulations can provide detailed mi-
croscopic information that cannot be obtained with deterministic solvers.

1 Introduction

The tension between software generality and performance is especially strong in
computationally intensive software, such as scientific and financial simulations.
Software designers usually aim to produce applications with a wide range of
functionality, which in the case of simulations means that they are highly pa-
rameterisable and, ideally, target different types of high-performance hardware.
Scientific software is often used for new research tasks, and financial software is
often employed for new products and new markets. In both cases, there is a high
likelihood that the boundary of previous uses will be stretched. However, gen-
erality often comes with a performance penalty, as computations become more
interpretive, require more runtime checks, and use less efficient data structures.

As an example, consider a computational chemistry simulation, using a Monte-
Carlo method, that in its innermost loop repeatedly selects a random chemical
� This work was funded by the UNSW FRGP High Performance Parallel Computing

for Complex Polymer Architecture Design.
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reaction from a set of possible reactions. The probabilities of the reactions are
determined by the reactions’ empirical rate coefficients and the reactants’ con-
centrations. If we aim for generality, the code will have the capability to handle
a wide range of reactions. These reactions and their probabilities will be stored
in a data structure that the code will have to traverse over and over when mak-
ing a selection and when updating the concentrations of the various reactants.
This is an interpretive process whose structure is not unlike that of an inter-
preter applying the rules of a term rewriting system repeatedly to the redexes
of a term. The more general the rules handled by the interpreter, the higher the
interpretive overhead, and the fewer rewrites will be executed per second.

To maximise performance, we need to eliminate all interpretive overhead. In
the extreme, we have a program that hard-codes a single term rewriting system;
i.e., we compile the term rewriting system instead of interpreting it. We can
transfer that idea to the chemistry simulation by specialising the simulator so
that it only applies a fixed set of reactions. Such specialisation can have a very
significant impact on the performance of simulators that execute a relatively
small part of the code very often; i.e., even minor inefficiencies of a few additional
CPU cycles can add significantly to the overall running time. Giving up on
generality is not an option. We also cannot expect the user to manually specialise
and optimise the simulation code for the exact reactions and input parameters
of a particular simulation; instead, we automate the generation and compilation
of specialised code.

In programming languages, the move between interpreter and compiler is well
known from the work on partial evaluation [1]. More generally, research on gen-
erative programming [2] and self-optimising libraries [3] introduced approaches
to code specialisation in a range of application areas, including numerically in-
tensive applications [4,5]. Much of this work is concerned with providing general
libraries that are specialised at compile time. In this paper, we transfer these
ideas from libraries to applications and combine them with runtime code gener-
ation and a development methodology based on prototyping.

More precisely, we introduce a novel software architecture for simulators using
Monte-Carlo methods. This architecture uses generative code specialisation to
reconcile generality and performance in a way that is transparent to the end
user. Specifically, instead of an interpretive simulator in a low-level language, we
implement a specialising simulator generator in a functional language and use it
to generate optimised C code specialised for a particular simulator configuration.
Moreover, we outline how a specialising simulator generator can be developed
by way of prototyping the simulator in a functional language.

We discuss the design of specialising simulator generators and the parallelisa-
tion of the generated simulators for Monte-Carlo methods. Moreover, we demon-
strate the practical relevance of our approach by a concrete application from
computational chemistry, namely a simulator for polymerisation kinetics using
a Markov-chain Monte-Carlo method.

We achieved unprecedented performance for the polymerisation simulator.
For the first time, it makes Monte-Carlo methods practically useful in an area



118 G. Keller et al.

that is dominated by deterministic PDE solvers. This is of high practical rele-
vance, as Monte-Carlo simulations can provide detailed microscopic information
about generated polymeric species. Such microscopic information—which is not
available from deterministic simulators, specifically those using the h-p-Galerkin
method [6,7]—includes (yet is not limited to) information on polymer species
with more than one chain length index (i.e., star polymer systems often applied
in polymeric drug, gene, and vaccine delivery systems [8]), cross-linking densi-
ties, and branching in complex polymer networks as well as detailed information
on copolymer compositions. Finally, we demonstrate good parallel speedups for
our Monte-Carlo method, whereas no parallel h-p-Galerkin solvers for polymeri-
sation exist to the best of our knowledge. Parallelisation is a pressing practical
problem, as multicore counts have replaced clock rates as the main parameter
increased in new processor generations.

In summary, our main contributions are the following:

– A development methodology and software architecture using generative code
specialisation for Monte-Carlo simulations (Section 2 & Section 3).

– A parallelisation strategy for Markov-chainMonte-Carlo methods (Section 4).
– A detailed performance evaluation of our Monte-Carlo simulator for poly-

merisation kinetics, which shows that the application of methods from func-
tional programming can lead to code that is significantly more efficient than
what can be achieved with traditional methods (Section 5).

As aforementioned, we build on a host of previous work from generative program-
ming, partial evaluation, and runtime code generation. We discuss this related
work as well as other work on polymerisation kinetics in Section 6.

2 A Generative Code Specialisation Architecture

Simulations based on Monte-Carlo methods are popular in the study of complex
systems with a large number of coupled degrees of freedom, this includes appli-
cations ranging from computational physics (e.g., high energy particle physics)
to financial mathematics (e.g., option pricing). The underlying principle is the
law of large numbers; that is, we can estimate the probability of an event with
increasing accuracy as we repeat a stochastic experiment over and over. This
principle applies to any system that we can model in terms of probability density
functions (PDFs). This includes the numerical approximation of purely math-
ematical constructs with no apparent stochasticity or randomness, such as ap-
proximating the value of π or the numerical integration of complex functions [9].

Monte-Carlo methods use probability density functions to drive sampling dur-
ing a simulation. This can be the repeated evaluation of a function at random
points, e.g. to integrate it numerically, or it can be a sequence of system state
changes, each of which occurs with a certain probability—e.g., a solution of
chemical reactants changes depending on the likelihood of the reactions.

To exploit the law of large numbers, all Monte-Carlo simulations repeat one or
more stochastic experiments a large number of times, while tallying the results,
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and possibly continuously evolving some system state and computing variance
reduction information. With increasing complexity of the system and increasing
need for precision, more and more stochastic experiments need to be performed.
This highly repetitive nature of Monte-Carlo simulations is one of the two key
points underlying the software architecture that we are about to discuss.

The second key point is that, in many application areas, Monte-Carlo sim-
ulations should admit a wide variety of different simulations. For example, in
reaction kinetics, we would like to handle many different chemical reactions and,
in financial modelling, we would like to model many different financial products.
We call this the configuration space. The more general a simulator, the larger its
configuration space. To explore new chemical processes and new financial prod-
ucts, we need to have short turn-arounds in an interactive system to explore a
design space by repeatedly altering configurations. In contrast, when the user
finds a point in the design space that they want to simulate in more detail, a
simulation may run for hours or even days.

In summary, the two crucial properties of Monte-Carlo simulations guiding
the following discussion are thus:

– Property 1: The simulation repeats one or more stochastic experiments and
associated bookkeeping a large number of times, to achieve numeric accuracy.

– Property 2: It simulates complex systems with a large number of degrees of
freedom and a rich configuration space.

2.1 The Classical Approach: A Simulator in C, C++, or Fortran

Property 1 makes Monte-Carlo simulators very computationally intensive—e.g.,
sophisticated simulations in the domain of polymerisation kinetics can run for
hours or even days. Hence, manually optimised simulator code in low-level lan-
guages like C, C++, and Fortran is the state of the art, and the use of functional
languages is out of the question, unless the same level of performance can be
achieved.

While Property 1 encourages the use of a low-level language, the number of
optimisations that can be performed in such a language is limited by Property 2.
A simulator in a low-level language must be sufficiently generic to handle a large
configuration space in which it has to evaluate functions with a large number
of inputs. In other words, the code in the repeatedly executed inner loop will
be complex and possibly traverse sophisticated data structures. However, given
the number of repetitions, each CPU cycle counts significantly towards the final
running time. Additional instructions required to implement a more general
solution lead to notable inefficiencies compared to specialised implementations.

To illustrate this situation, consider reaction kinetics again. Each reaction oc-
curs with a probability that depends on the relative concentration of the various
reactants. If it occurs, it will consume one or more reactants and release new
reactants into the solution. A Monte-Carlo simulator will have to keep track of
these concentrations and the associated reaction probabilities. It has to select
reactions according to the implied probability density function. The reactions
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have to be modelled in a data structure and the more variations we allow, the
more interpretive the process in the inner loop will be. In other words, the larger
the configuration space, the slower the simulator.

2.2 A Generative Approach

This situation calls for a generative approach. The simulator has a large config-
uration space and its inner loop will be executed many times for a single config-
uration, making it worthwhile to specialise the inner loop for one configuration,
thus, effectively giving us a custom simulator for one problem. This specialisation
has to be transparent to the user and has to occur in an interactive environment
to admit exploratory uses. Hence, we propose the use of online generative code
specialisation: that is, depending on user input, the application specialises its
inner core to produce highly optimised code, and then, dynamically loads and
links that code into the running application.

2.3 From Haskell to C to a C Generator

We propose the following development methodology:

1. Implement a prototype simulator in a functional language like Haskell as an
executable specification, to explore alternative designs.

2. Implement a specialised simulator in a low-level language like C by special-
ising the prototype simulator for one or more concrete simulator configura-
tions. Use it to explore possible low-level optimisations including selecting
appropriate imperative data structures.

3. Replace the simulator core of the prototype simulator with a simulator gener-
ator that, when executed on the same configuration, produces the specialised
simulator we manually implemented in the previous step.

Both the specialised simulator and the simulator generator are validated against
the prototype simulator, which is much more compact and easier to reason
about. This development methodology is especially worthwhile when extend-
ing the boundaries of existing simulators, as was the case in the project in
which we developed it. We had undertaken to implement the first simulator to
compute detailed microscopic information for reactions of star polymers and to
achieve higher levels of efficiency than existing simulators. Existing systems ei-
ther oversimplified complex molecular structures [10] or lacked performance and
generality [6]. Moreover, no existing system was parallelised, and we aimed for
good scalability on high-latency networks, such as Ethernet-based PC clusters.

Consequently, we developed a new simulator from scratch in Haskell and
placed particular emphasis on data structures for the system state that are
sufficiently small to enable cheap network transmission, while still allowing for a
highly efficient innermost loop of the simulator. Subsequently, we parallelised the
prototype simulator using a generic master/worker skeleton based on the stan-
dard network library distributed with the Glasgow Haskell Compiler (GHC).
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Only after we convinced ourselves of the efficiency of the data structures
and algorithms implemented in the prototype using GHC’s heap profiler and
scalability benchmarks on a PC cluster, did we turn to Step 2 of our development
methodology and implement a specialised simulator in C. This enabled problem-
oriented, explorative development without too much attention to low-level details
and avoiding premature optimisations.

The concrete specialisation opportunities in Step 2 are domain-specific and
to find them specialisation-time data must be separated from runtime data; i.e.,
the variables in the inner loop of the simulator that are fixed by the simulator
configuration and do not change between loop iterations must be identified. In
our case, this was the number and type of reactions and reactants; i.e., we can
pre-calculate and hardcode all possible one-step changes of the system state.

In Step 3, we exploit the fact that the performance-critical code is in the inner
loop of the simulator. Hence, the simulator generator does not need to generate
the C code for an entire simulator. Instead, it inserts into a simulator skeleton
only system-state initialisation code, state-changing code of the inner loops,
and other configuration-depended code, such as some I/O. For example, in the
simulator for polymerisation kinetics, the most important piece of specialised
and generated code is the body of one C switch statement that, depending
on the randomly selected reaction, effects the update of the system state—c.f.,
Section 3.2.

2.4 Runtime Compilation and Loading

The use of a simulator generator implies runtime code generation and compila-
tion. In our case, the latter consists of invoking a standard C compiler, such as
GNU’s gcc or Intel’s icc to compile the generated specialised simulator. Given
the long running times of typical Monte-Carlo simulations, we can even amor-
tise time-consuming compilation with costly optimisations enabled. In addition
to the simplification of data and control structures explicitly performed by the
specialising simulator generator, the C compiler can exploit the fact that many
of the variables of the generic simulator are now embedded as constants. This
leads to additional constant folding, loop unrolling, etc.

After code generation, the simulator executable can be executed in a separate
process or, as in our implementation, loaded into the main application using
dynamic code loading [11]. The latter is attractive for interactive applications
that, for example, animate the simulation graphically.

3 Generative Monte-Carlo Methods

We will now discuss two examples of Monte-Carlo methods. The first is a toy
example to illustrate the basic structure of Monte-Carlo methods and the second
is a real-world application, namely the aforementioned polymerisation simulator.
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Fig. 1. Structure of polymerisation simulator (left) and computed molecular weight
distribution (right)

3.1 Computing π

The probably simplest Monte-Carlo method is the one to compute an approxi-
mation of π. We know that the area of a circle is A = πr2. Hence, π = A/r2; i.e.,
π/4 is the probability that a point picked at random out of a square of side length
2r is within the circle enclosed by that square. As explained in the previous sec-
tion, the fundamental idea underlying Monte-Carlo methods is to estimate the
probability of an event with increasing accuracy by repeating a stochastic exper-
iment over and over. Here the stochastic experiment is to pick a point in the
square at random, and we use that experiment to approximate the probabil-
ity that picked points lie inside the circle. By multiplying that approximated
probability with 4, we approximate π.

3.2 Modelling Polymerisation Kinetics

Our main example is a simulator for polymerisation kinetics. This is a complete
application incorporating a significant amount of domain knowledge; hence, we
cannot sensibly display and explain its source code in a paper. However, the code
is publicly available1 for inspection and use—in fact, we have two versions of the
application, the prototype simulator (entirely in Haskell) and the specialising
simulator generator (with the generator in Haskell and the simulator skeleton in
C). In the following, we will discuss the innermost loop of the simulator, con-
taining all the performance-critical code, as well as sketch the work distribution
between the simulator generator (in Haskell) and the simulator skeleton (in C).
Due to space constraints and to avoid having to explain too much of the chem-
istry, we will abstract over many of the simulator data structures; more details,
from a chemist’s perspective, are in a companion paper [8].

Chemical reactions in four steps. The four steps performed by the innermost
loop of the simulator are illustrated in Figure 1 (left): ➀ computation of the re-
action probabilities; ➁ random selection of a reaction; ➂ random selection of the

1 http://www.cse.unsw.edu.au/∼chak/project/polysim/

http://www.cse.unsw.edu.au/~chak/project/polysim/
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...
D:Comment;DECOMPOSITION
Elementalreaction I 0 I* I* 0 kd
...

Model as .rsy file

simulator
generator
in Haskell

=⇒

#define I Star 2
...
#define DECOMPOSITION 0
...
#define DO REACT BODY \

{case DECOMPOSITION:\
resMolCnt = 2;\
resMol1Spec = I Star;\
resMol2Spec = I Star;\
break;\
...
Generated genpolymer.h

#include "genpolymer.h"
void oneReaction () { // updates global system state
int reactIndex, mol1Len, mol2Len; // consumed molecules
int resMol1Spec, resMol2Spec, // produced. . .

resMol1Len[CHAINS], resMol2Len[CHAINS]; // . . .molecules
int resMolCnt = 1; // number of produced; default is one

� Compute reaction probabilities as product of the reaction’s statically determined
relative probability and the current concentration of the reactants involved.

updateProbabilities ();

� Randomly pick a reaction according to the current reaction probabilities; e.g., from
the list in Figure 1 (left), we might pick Pn + Pm �→ Pn+m.

reactIndex = pickRndReact ();

� Randomly pick the molecules involved in the reaction. In some systems polymers
with different chain lengths react with different probability. For the reaction Pn +
Pm �→ Pn+m, we have to pick two random chain lengths n and m.

mol1Len = pickRndMol (reactToSpecInd1 (reactIndex));
if (consumesTwoMols (reactIndex))
mol2Len = pickRndMol (reactToSpecInd2 (reactIndex));

� Compute reaction products, and update the concentration of molecules accord-
ingly; for our example, we add Pn+m. The consumed molecules, Pn and Pm, were
already removed in Step �. Also, the system clock is incremented.

switch (reactIndex) // compute reaction products
DO REACT BODY // defined by simulator generator; sets resMol1Spec etc.

incrementMolCnt (resMol1Spec, resMol1Len);
if (resMolCnt == 2)
incrementMolCnt (resMol2Spec, resMol2Len);

advanceSystemTime (); // compute Δt of this reaction
}

Fig. 2. Task of the specialising generator (top) and simulator skeleton (bottom)
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consumed molecules; and ➃ update of the system with the produced molecules.
These steps are further explained in Figure 2 (bottom), where the corresponding
C code of the simulator skeleton, in form of the function oneReaction(), is also
given. In fact, the C code of oneReaction() is almost the same for a generic
simulator and a specialised simulator. The main difference is the switch state-
ment and its body DO REACT BODY, which is a placeholder for code inserted by
the specialising simulator generator—we will come back to this below.

Chemistry basics. Generally, polymerisation kinetics features two kinds of mole-
cules: simple molecules that have no chain length (such as the I in the example)
and polymers that have a chain length specified by a suffix (such as the Pn in
the example). Polymers with multiple chains, are called star polymers, which are
often applied in polymeric drug, gene, and vaccine delivery systems. Our simu-
lator is the first to compute detailed microscopic information for this important
class of polymers. In our simulator, a reaction consumes one or two molecules
and also produces one or two molecules; this is encoded in the conditionals in
Step ➂ and ➃, respectively. Reactions involving polymers are specific w.r.t. the
type of molecules involved, but are parametrised over the chain length; e.g.,
Pn + Pm �→ Pn+m consumes two polymers with lengths n and m and produces
one with length n+m. In Step ➂, the probability always depends on the current
concentration of the molecules of varying chain lengths, but may be adjusted by
a factor that models how the chain length influences the reactivity of a molecule.

Computing molecular weight distributions. Each invocation of oneReaction()
corresponds to one chemical reaction and to one stochastic experiment of the
Monte-Carlo method. These reactions slowly alter the concentration of polymer
molecules with particular chain lengths. An indirect measure of chain length is
molecular weight, and Chemists like to see the evaluation of polymer concentra-
tions in the form of molecular weight distributions, as in Figure 1 (right), which
was computed by our simulator.

Specialisation. Figure 2 (top) illustrates the task of the specialising simulator
generator: it reads a reaction specification, as an .rsy file, and compiles it into
a C header file genpolymer.h. This header file contains all reaction-specific data
and code, and is #included by the simulator skeleton. To avoid overheads due to
sophisticated data structures, the different types of molecules and reactions are
simply encoded as integers (e.g., the #defines for I Star and DECOMPOSITION in
the displayed code fragment). This, most importantly, enables the use of a simple
switch statement to compute the produced molecules in Step ➃. The body of
that switch statement is one of the most important pieces of generated code
and #defined by DO REACT BODY (underlined). The code fragment in Figure 2
(top) gives the switch case for a simple decomposition reaction. The cases for
polymers are somewhat more involved, as chain lengths have to be computed.

In Section 1, we discussed that the aim of a specialising simulator generator is
to eliminate interpretive overhead. In the polymerisation simulator, we achieve
this by (a) hardcoding the reactants involved in each reaction and (b) using
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an array with fixed size and layout that maps molecule types (including chain
length for polymers) to the number of that type of molecule in the system.
Point (a) is crucial to be able to use a switch statement with a few simple
operations per case/reaction in Step ➃. In contrast, a generic simulator needs
to consult a dynamic reaction table to achieve the same. For a complex reaction,
this specialisation reduces the number of executed assembly instructions in our
code from 31 (including 5 branches) to 6 (including one branch and one indirect
jump) when compiled with the Intel C compiler.

3.3 A Specialiser in Haskell

In general, the reaction specifications are significantly more involved than the
.rsy file fragment in Figure 2 (top). The file format originates from the PREDICI
system [12,13] and, by using it, we can create chemical models with PREDICI’s
graphical frontend. Parsing reaction specifications, extracting the information
necessary for the simulator generation, and generating the specialised C data
structures and code fragments makes heavy use of algebraic data types, pattern-
matching, list manipulation, and higher-order functions; i.e., it is the type of
code where functional languages excel.

As an example, take the fragment of the specialisation code in Figure 3,
which is a simplified version of the actual code used in the generator. We model
chemical reactions with the type Reaction, which specifies the involved kinds
of molecules and the reaction’s rate coefficient (i.e., the probability of that reac-
tion happening in dependence on the concentrations of the involved reactants).
Molecules can be of three kinds determined by the data type Kind (i.e., sim-
ple molecules, linear polymer chains, and star polymers). Moreover, the variant
NoSpec is used to when any of the two reactant or product slots in a Reaction
are not used (e.g., reactions where two reactant molecules result in a single
product molecule). In addition to Reactions, we have ReactionSchemas that
determine the length of polymers produced by a reaction using values of type
ResLen. Figure 3 only shows part of the definition of ResLen; in general, it
models arithmetic expressions over the two input chain lengths with support for
inclusion of random variables. The latter is required to represent the splitting of
a polymer chain at a random position. For star polymers, ResLen calculations
become slightly more complicated, as we need to express a sequence of calcula-
tions on a star’s chains. As an example, take the reaction discussed previously:
Pn + Pm �→ Pn+m. It’s representation as a ReactionSchema is by the value
RS (Poly, Poly) (Poly, NoSpec) (AddLen FstLen SndLen, NoLen).

Figure 3 also gives the code for the function specialiseReacts, which uses a
list comprehension to combine each reaction with its matching schema, as deter-
mined by the auxiliary function matchesSchema. The function then derives from
each matching reaction-schema pair a specialised reaction SpecReaction. These
specialised reactions are subsequently fed into the code generator to produce the
code for DO REACT BODY.
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— Concrete reaction:
data Reaction =
Reaction
Name
RateCoef — rate coefficient
Kind Kind — reactants
Kind Kind — products

data ResLen — Reaction product length:
= FstLen — length of 1st reactant
| SndLen — length of 2st reactant
| AddLen ResLen ResLen

— sum of 1st & 2nd
| ConstLen Int — constant length
— some further variants

type RateCoef = Double
type Arms = Int

— Various kinds of molecules:
data Kind
= Simple — regular molecule
| Poly — linear polymer
| Star Arms — star polymer
| NoSpec — not present

— How to compute polymer lengths:
data ReactionSchema
= RS (Kind, Kind) — reactants

(Kind, Kind) — products
(ResLen, ResLen)

— product lengths

— Desc. of a specialised reaction:
data SpecReaction =
SpecReaction
Name
Kind Kind — reactants
Kind ResLen — product #1
KInd ResLen — product #2

specialiseReacts :: [Reaction] -> [ReactionSchema] -> [SpecReaction]
specialiseReacts reactions schemata = map specialiseReaction reactSchema

where
reactSchema = [(r,s) | r <- reactions, s <- schemata, matchesSchema r s]

specialiseReaction ((Reaction name react1 react2 prod1 prod2),
(RS name (resLen1, resLen2)))

= SpecReaction react1 react2 prod1 resLen1 prod2 resLen2

matchesSchema :: Reaction -> ReactionSchema -> Bool
matchesSchema r s = 〈check whether reaction r fits schema s〉

Fig. 3. Fragment of the specialisation code

The specialiser generates all C code that is dependent on the type of molecules
and reactions in the system. In the C skeleton, these code fragments are repre-
sented by C pre-processor macros, such as DO REACT BODY. Similarly, all system
parameters (e.g., the maximum number of chains per molecule CHAINS) and tag
values to represent molecules and reactions (e.g., I Star and DECOMPOSITION)
are computed by the specialiser and emitted as macro declarations. All param-
eters of reactions, such as rate coefficients, are hardcoded into the macros that
form the system initialisation code. After macro expansion, the C compiler is
presented with a program manipulating integers, floats, and arrays that has a
simple control structure and is littered with constant values—i.e., it has ample
opportunities to apply standard compiler optimisations.
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4 Parallelisation

Monte-Carlo methods where the individual stochastic experiments are indepen-
dent—such as the approximation of π—are almost trivial to parallelise. The
large number of independent stochastic experiments can be easily distributed
over multiple processors, as long as we ensure that the statistic properties of
our source of randomness are robust with respect to parallel execution. The only
communication between the parallel threads is at the end of the simulation when
the local results need to be combined into a global result. This can be efficiently
achieved with standard parallel reduction operations (e.g., parallel folds).

The parallelisation of the polymerisation simulator is more involved. The prob-
ability of the various types of reactions changes over time with the changing con-
centration of the molecules involved in a reaction. In other words, the stochastic
experiments are dependent and we have a Markov-chain Monte-Carlo method.
Previous proposals to parallelise Monte-Carlo polymerisation involve running
the same simulation several times and calculating the average [6]. Different in-
stances of the same simulation can run in parallel, and the average over the
individual results will be more accurate than any single simulation. However,
it is important to keep in mind that running the same simulation ten times
will not, in general, lead to a result of the same quality as a single simulation
of a system ten times the size, since the concentration of some of the reac-
tants is so low, that, for small systems there would be less than one molecule
available and the fact that the simulation is discrete would distort the result.
This is not just a theoretical problem, we have observed it in production-sized
simulations [8].

We solved this problem by exploiting the following observation: a common
simplification in simulations of reaction kinetics is to abstract over the spatial
location of the molecules in the system. If two molecules are far apart, they
would, in reality, be less likely to react. We can use this for parallelisation by
splitting the system into several subsystems, running the simulation of the sub-
systems independently in parallel, but ensuring that we mix—i.e., gather, av-
erage, and re-distribute—the states of the subsystems with sufficient frequency
to model the Brownian motion of the molecules. Thus, we parallelise the appli-
cation without compromising the quality of the result. The speed up is slightly
less than for a trivially parallel Monte-Carlo simulation, as mixing triggers com-
munication. However, as the following benchmarks show, the parallelisation is
still very good.

Although, our approach of regularly averaging over a set of Monte-Carlo sim-
ulations running in parallel was motivated by the physical intuition of spatial
separation and Brownian motion in a liquid, we conjecture that the same ap-
proach to parallelisation is more generally applicable to Markov-chain Monte-
Carlo methods. Regular averaging over a set of parallel simulations will improve
the accuracy of the intermediate results and so usually accelerate convergence.
However, the ideal frequency for mixing will depend on the concrete application.
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5 Performance

To quantify the performance benefits of our approach, we will now discuss three
aspects of the performance of our system: (a) the performance improvement due
to specialisation, (b) the speedup due to parallelisation, and (c) the performance
relative to existing systems. We used two types of hardware for benchmarking
the Monte-Carlo code: (1) a PC cluster with Intel Pentium 4, 3.2GHz, proces-
sors connected by GigaBit Ethernet (called P4 cluster in the following) and
(2) a shared-memory computer containing 8x dualcore AMD Athlon 64 3200+,
2.2GHz, processors connected by a HyperTransport 1.0 bus (called Athlon SMP
in the following). Both systems ran GNU/Linux. All C code was compiled with
the Intel C compiler icc, version 9.1, except where we explicitly noted the use
of the GNU C compiler gcc, version 4.1. We generated random numbers using
Matsumoto & Nishimura’s Mersenne Twister MT19937, version 2002/1/26. All
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communication between parallel processes was via MPICH2. We only used one
core per processor of the Athlon SMP system to avoid skewing the benchmarks
by bus contention on the processor-memory interface.

Generic versus specialised simulator. We start by quantifying the performance
benefit gained from specialisation. Figure 4(a) plots the running time of a generic
simulator, manually implemented in C, and a simulator produced by our spe-
cialising simulator generator. For this particular simulation (a simple model of
the polymerisation of bulk styrene [8, Fig. 4]), the specialisation leads to a per-
formance improvement between a factor of 2 and 2.5, depending on whether we
compile with gcc or icc. The benchmark was executed on one node of the P4
cluster—icc produces only marginally better code than gcc on AMD processors.

Accurate comparisons with other Monte-Carlo simulators for polymerisation
kinetics are difficult, as published data is scarce and no software is available for
benchmarking. However, we reproduced the methyl acrylate model of Drache et
al. [6] to the best of our knowledge and the performance of the processors in our
Athlon SMP system is very similar to the hardware used by Drache et al. The re-
sults suggest that the performance of our generic simulator, at least for Drache’s
methyl acrylate model, is essentially the same as that of Drache’s simulator. In
summary, our novel specialising simulator generators advance the state-of-the-
art in uniprocessor performance of Monte-Carlo simulators for polymerisation
kinetics by around a factor of two.

Parallel speedup. Figure 4(b) graphs the speedup of the specialised simulator
for the simple styrene model for both the P4 cluster and the Athlon SMP. It
does so for a solution containing 109 and a solution containing 1010 particles.
With 1010 particles, we get very good scalability (close to 7.5 for 8 PEs) on both
architectures. Given the rather simple commodity hardware of the P4 cluster,
this is a very positive result. For 109 particles, scalability is clearly limited. In
essence, the 109 particle system is too small to efficiently utilise more than 4
PEs in the cluster and 5 PEs in the SMP system.

Deterministic versus Monte-Carlo simulator. From an end-user perspective, it is
irrelevant whether a simulator uses a Monte-Carlo or a deterministic method, such
as the popular h-p-Galerkin method to compute a molecular weight distribution
by solving partial differential equations. What counts is (a) the amount of detail
in the information produced by the simulator and (b) the speed with which the in-
formation is computed. Monte-Carlo methods are attractive as they can compute
information detail that is not available from deterministic simulators, such as in-
formation on polymer species with more than one chain length index, cross-linking
densities, and branching in complex polymer networks as well as information on
copolymer compositions [6,7]. However, Monte-Carlo methods are rarely used in
practice as they have until now required much longer simulation times.

We already showed that our use of specialising simulator generators improves
the performance over generic Monte-Carlo simulators, such as Drache’s sys-
tem [6], even for simple polymerisation models. However, the acid test for the
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practical usefulness of our approach is a comparison with the fastest available
deterministic solvers. The undisputed leader in this space is the commercial
package PREDICI (of CiT GmbH) [12,13]. We originally benchmarked the dis-
tributed version 6.36.1 of PREDICI, but after supplying CiT with a draft of our
companion paper [8] and after some discussion about the reasons for the poor
performance of PREDICI between CiT and us, CiT supplied us with a custom
optimised version of PREDICI, which performs much better on the complex
styrene model [8, Fig. 5] used for the benchmarks. All PREDICI benchmarks
were on a 3.4GHz Xeon machine running Windows; i.e., slightly faster hardware
than the P4 cluster, which we measured our code on.

The results are depicted in Figure 4(c). The bars labelled “MC 109” and “MC
1010” are for the uniprocessor performance of our specialised Monte-Carlo simu-
lator for 109 and 1010 particles, respectively, on the P4 cluster. “MC 109/8” and
“MC 1010/8” are for the same code running in parallel on 8 PEs. “MC 1010/16”
is also only on 8 PEs, but using 16 processes to gain some further slight speedup
by using the HyperThreading capabilities of the processors of the P4 cluster.

Our uniprocessor performance is several times better than the original per-
formance of PREDICI. However, after the optimisation, PREDICI improved by
two orders of magnitude2 and we need to use 4 PEs to achieve roughly the same
performance with Monte-Carlo. (At this stage, it is not entirely clear how gen-
eral the optimisation of PREDICI is.) The number of particles for Monte-Carlo
and the accuracy value of PREDICI that give comparable results depend on the
simulated model. In this benchmark, Monte-Carlo with 109 particles is compa-
rable to PREDICI with an accuracy of 0.02; so, with 8 PEs, we are nearly twice
as fast—note that this is on a cheap Ethernet-based cluster.

In summary, our combined performance improvement by specialisation and
parallelisation has made Monte-Carlo methods for polymerisation kinetics a
practical alternative to deterministic solvers for complex models; especially so,
when microscopic detail is of interest that deterministic solvers cannot produce.
Moreover, with the increasing number of cores in commodity processors, the lack
of parallelisation will be an ever more serious obstacle for deterministic solvers.

6 Related Work

Generative programming. FFTW [4] was clearly an inspiration for us and shares
with our approach the use a functional language to generate optimised low-level
code. This is, however, where the similarity ends. FFTW provides a library of
composable solvers, whereas we presented an application architecture. FFTW
heavily relies on dynamic optimisations, whereas our approach is purely static.

ATLAS [14] applies techniques similar to FFTW to the implementation of op-
timised BLAS algorithms. In particular, it runs benchmarks kernels at installa-
tion time to determine important architecture parameters and compose optimised
BLAS routines from a range of kernels using a code generator.
2 PREDICI’s dramatic improvement is due to an algorithmic change, after studying

the behaviour of our complex styrene model with our Monte-Carlo simulator.
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Partial evaluation. Partial evaluators for C, such as C-Mix [15] and Tempo [16],
share with our work the objective of high-performing, yet easily maintainable
code, and they also rely on the C compiler to apply standard optimisations
that have been enabled by specialisation. However, there are also significant
differences: We changed the core data structures when moving from generic to
specialised simulator. It is unlikely that the same kind of changes could have
been achieved automatically, as we relied on domain knowledge. Our specialising
simulator generator makes heavy use of higher-order functions, pattern matching
and algebraic data types. These language features are not or not particularly well
supported in C, and so would not be available when implementing a fully generic
simulator in C (for specialisation by a partial evaluator tool); i.e., we would lose
the benefit of doing most of the algorithmic work in a declarative language.

C++ templates as a substrate for partial evaluation, as in [17], allow the
addition of domain specific information, and it would be interesting to investigate
if it is possible to get similar results as we have with our approach. However, it
would definitely be necessary to push the limits of C++ template programming,
a technique which can be fairly tricky and error prone.

Polymerisation kinetics. We based the development of our Monte-Carlo method
on [18,19,20,6]. Although Drache et al. [6] use multiple processors to run inde-
pendent simulations in parallel, to increase the accuracy of the result, we are the
first to implemented a parallel version of a single simulation. We discussed this
and compared our performance with Drache’s in Section 5.

7 Conclusion

The classic approach to high-performance Monte-Carlo simulations is to design,
implement, and optimise a generic simulator in an imperative language. Using
a functional language, we outperformed the classic approach in generality (we
fully simulate star polymers) and execution time (we are more than twice as
fast on a uniprocessor and scale well in parallel) by exploring the design space
with a functional prototype and generating specialised data structures and per-
formance critical code. For the first time, Monte-Carlo methods are now a viable
alternative to deterministic solvers for polymerisation kinetics.

Acknowledgements. We would like to thank Dr. Michael Wulkow from CiT
GmbH for the stimulating and interesting discussions that have benefited both
the PREDICI and parallel Monte Carlo approach. We also thank the anonymous
reviewers for their helpful comments.

References

1. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall International, Englewood Cliffs (1993)

2. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley (2000)



132 G. Keller et al.

3. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers
and libraries. In: Proc. of the SIAM Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing (OO 1998) (1998)

4. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

5. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compil-
ers and libraries. In: Proc. of the SIAM Workshop on Object Oriented Methods
for Inter-operable Scientific and Engineering Computing (OO 1998), SIAM Press
(1998)

6. Drache, M., Schmidt-Naake, G., Buback, M., Vana, P.: Modeling RAFT polymer-
ization kinetics via Monte Carlo methods: cumyl dithiobenzoate mediated methyl
acrylate polymerization. Polymer (2004)

7. Tobita, H., Yanase, F.: Monte Carlo simulation of controlled/living radical poly-
merization in emulsified systems. Macromolecular Theory and Simulation (2007)

8. Chaffey-Millar, H., Stewart, D.B., Chakravarty, M., Keller, G., Barner-Kowollik,
C.: A parallelised high performance Monte Carlo simulation approach for complex
polimerization kinetics. Macromolecular Theory and Simulations 16(6), 575–592
(2007)

9. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg
(2004)

10. Chaffey-Millar, H., Busch, M., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C.:
Advanced computational strategies for modelling the evolution of full molecular
weight distributions formed during multiarmed (star) polymerisations 14 (2005)

11. Pang, A., Stewart, D., Seefried, S., Chakravarty, M.M.T.: Plugging Haskell in. In:
Proc. of the ACM SIGPLAN Workshop on Haskell, pp. 10–21. ACM Press, New
York (2004)

12. Wulkow, M.: Predici (2007), http://www.cit-wulkow.de/tbapred.htm
13. Wulkow, M.: The simulation of molecular weight distributions in polyreaction ki-

netics by discrete galerkin methods. Macromolecular Theory Simulation 5 (1996)
14. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of

software and the ATLAS project. Parallel Computing 27(1–2), 3–35 (2001)
15. Glenstrup, A.J., H.M., Secher, J.P.: C-Mix – specialization of C programs. In:

Partial Evaluation: Practice and Theory (1999)
16. Consel, C., Hornof, L., Lawall, J.L., Marlet, R., Muller, G., Noy, J., Thibault,

S., Volanschi, E.N.: Tempo: Specializing systems applications and beyond. ACM
Computing Surveys 30(3) (September 1998)

17. Veldhuizen, T.L.: C++ templates as partial evaluation. Partial Evaluation and
Semantic-Based Program Manipulation, 13–18 (1999)

18. Lu, J., Zhang, H., Yang, Y.: Monte carlo simulation of kinetics and chain-length
distribution in radical polymerization. Macromolecular Theory and Simulation 2,
747–760 (1993)

19. He, J., Zhang, H., Yang, Y.: Monte carlo simulation of chain length distribution in
radical polymerization with transfer reaction. Macromolecular Theory and Simu-
lation 4, 811–819 (1995)

20. Prescott, S.W.: Chain-length dependence in living/controlled free-radical polymer-
izations: Physical manifestation and Monte Carlo simulation of reversible transfer
agents. Macromolecules 36, 9608–9621 (2003)

http://www.cit-wulkow.de/tbapred.htm


A Generic Programming Toolkit for PADS/ML:
First-Class Upgrades for Third-Party Developers

Mary Fernández1, Kathleen Fisher1, J. Nathan Foster2, Michael Greenberg1,2,
and Yitzhak Mandelbaum1

1 AT&T Research
2 University of Pennsylvania

Abstract. Domain-specific languages facilitate solving problems in a targeted do-
main by providing features particular to the domain. Declarative domain-specific
languages have the additional benefit that users specify what something means
rather than how to do something. As a result, the language compiler is free to
choose the best implementation strategies and to generate multiple artifacts from
a single description. PADS/ML is a declarative data description language designed
to facilitate ad hoc data management. From a single description, the compiler
generates a myriad of artifacts, including data structures for the in-memory rep-
resentation of the data and parsers and printers. In this paper, we describe a new
generic programming infrastructure for PADS/ML that allows third-party develop-
ers to define additional useful artifacts without modifying the compiler. We report
on two case studies that use this infrastructure. In the first, we build a version of
PADX for PADS/ML, allowing any data source with a PADS/ML description to be
queried as if it were XML. In the second, we extend Harmony with the ability to
synchronize any data with a PADS/ML description.

1 Introduction

Domain-specific languages provide enormous leverage precisely because they have lim-
ited scope, allowing their designers to tailor the abstractions they provide to the targeted
domain. Declarative domain-specific languages bring an additional benefit in that they
specify what something means, rather than how to do something. As a result, the com-
piler is free to decide how to accomplish the task and even what tasks need to be accom-
plished. This freedom allows the designers of declarative domain-specific languages to
generate more than one software artifact from a single specification.

The PADS/ML language is a declarative domain-specific language for specifying the
format of ad hoc data [MFW+07]. An ad hoc data format is any semi-structured data
representation for which parsing, querying, analysis, or transformation tools are not
readily available. Despite the existence of standard formats like XML, ad hoc data
sources are ubiquitous, arising in industries as diverse as finance, health care, trans-
portation, and telecommunications as well as in scientific domains, such as computa-
tional biology and physics. Figure 1 summarizes a variety of such formats, including
ASCII and binary encodings, with both fixed and variable-width records arranged in
linear sequences and in tree-shaped hierarchies.
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Name Use Representation
Gene Ontology (GO) [Con] Gene Product Information Variable-width ASCII records
SDSS/Reglens Data [MHS+05] Weak gravitational lensing Floating point numbers, et al

analysis
Web server logs (CLF) Measuring web workloads Fixed-column ASCII records
AT&T Call detail data Phone call fraud detection Fixed-width binary records
Newick Immune system response Fixed-width ASCII records

simulation
in tree-shaped hierarchy

OPRA Options-market transactions Mixed binary & ASCII records
with data-dependent unions

Palm PDA Device synchronization Mixed binary & character
with data-dependent constraints

Fig. 1. Selected ad hoc data sources

Common characteristics of ad hoc data make it difficult to perform even basic data-
processing tasks. To start, data analysts have little control over the format of the data; it
typically arrives “as is,” and the analysts can only thank the supplier, not request a more
convenient format. The documentation accompanying ad hoc data is often incomplete,
inaccurate, or missing entirely, which makes understanding the data format more diffi-
cult. Ad hoc data sources frequently contain errors, which poses another challenge. For
some applications, like system monitors, erroneous data is more important than error-
free data; it may signal, for example, where two systems are failing to communicate.
Unfortunately, writing code that reliably handles both error-free and erroneous data is
difficult and tedious.

The PADS/ML system, like its close ancestor PADS/C [FG05], solves these prob-
lems by providing a declarative data description language. A PADS/ML specification
describes the physical layout and semantic properties of an ad hoc data source. The
language provides a type-based model: basic types specify atomic data such as inte-
gers, strings, dates, etc., while structured types such as tuples, records, and datatypes
describe compound data. Leveraging the declarative nature of such descriptions, the
PADS/ML compiler generates from each description a suite of useful data structures and
tools, including a canonical in-memory representation of the data, a canonical meta-data
representation called a parse descriptor, a parser, and a printer.

Ideally, a system like PADS/ML would permit third-party developers to build new
tools for specifications without modifying the compiler. With that goal in mind, the
original PADS/ML compiler generated an OCAML functor for traversing the canonical
data structure. Although an improvement over PADS/C, which requires modifying the
compiler to generate new tools, the PADS/ML infrastructure was insufficient because it
only supported tools that consume a PADS data representation in a single depth-first,
left-to-right traversal. This limitation precludes many useful tools, e.g., those that re-
quire a different traversal strategy or that produce a PADS/ML data representation rather
than consuming one.

To rectify this deficiency, we redesigned the generic tool infrastructure of PADS/ML,
leveraging ideas from type-directed programming [Yan98, Hin04]. Given a PADS/ML
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description, third-party developers can now build a wide variety of generic tools re-
lating to the description’s in-memory representation and parse descriptor. To illus-
trate the power of this generic infrastructure, we describe two third-party tools that
did not require making tool-specific changes to the compiler: an implementation of
PADX [FFGM06], a system for querying any PADS data source as though it were XML;
and an extension to Harmony [FGK+07, PBF+], a system for synchronizing data.

The contributions of this paper are:

– An extension of PADS/ML with a generic tool infrastructure, which permits third
parties to easily build new tools for processing PADS data (Section 3).

– A demonstration of how to implement generic programming constructs in OCAML

(Section 3).
– Case studies of two non-trivial ad hoc data tools whose functionality was enhanced

by using PADS/ML’s generic tool infrastructure (Section 4).

We briefly review the PADS/ML data description language in Section 2. We then
describe the generic tool framework in Section 3. In Section 4, we describe how the
framework was used to build PADX and Harmony. We survey related work and conclude
in Section 5.

2 A Review of PADS/ML

In this section, we briefly describe PADS/ML; a more complete description appears in
earlier publications [MFW+07, Man06]. A PADS/ML description specifies the physi-
cal layout and semantic properties of an ad hoc data source. These descriptions are
formulated using types. Base types describe atomic data, such as ASCII-encoded, 8-
bit unsigned integers (puint8), binary 32-bit integers (pbint32), dates (pdate),
strings (pstring), and the singleton types corresponding to literal values. Certain
base types take additional OCAML values as parameters. For example, pstring(c)
describes strings that are immediately followed by the character c. Structured types de-
scribe compound data built using standard type constructors such as tuples and records
for specifying ordered data, variants for specifying alternatives, and lists for specify-
ing homogeneous sequences of data. Type constraints describe data satisfying arbitrary
programmer-specified semantic conditions—e.g., that a string pstring has at least
ten characters. The following subsections illustrate PADS/ML types further using Cisco
router configuration files as an example.

2.1 Example: Cisco Router Configuration

A configuration file for a Cisco router sets the values of parameters that control the
router’s behavior. The configuration language contains hundreds of commands, and a
typical configuration file has hundreds of commands with thousands of parameters.
A configuration file lists commands, one per line, where the first word on the line is
the command and the remaining words are parameters. A command may depend on
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version 12.0
!
hostname anaconda
username viking password 5 AF334003CC2
policy-map mis_policy_90:100_output_12K

class rt_class
priority
police cir percent 90 conf-act tx

end

Fig. 2. A tiny excerpt of a Cisco router configuration file

ptype command = cmd_name * ’ ’ * cmd_args
ptype section (min_indent : int) = {

indent: [i: pstring_ME("/ˆ */") | length i >= min_indent];
start_cmd: command; peol;
sub_cmds: section(length indent + 1) plist(No_sep,Error_term)

}
ptype config_element =

Section of section (0)
| Comment of pre "/ *[!].*$/" * peol

ptype source = config_element plist(No_sep,No_term)

Fig. 3. Simplified description of Cisco configuration files

other commands, indicated by indentation. Additionally, configurations may include
comments, marked by “!”. Figure 2 shows an excerpt of such a file.

Figure 3 contains a simplified PADS/ML description of the Cisco configuration file
format. The description is a sequence of type definitions. The first definition,command,
describes a single command consisting of a command name followed by its arguments.
The section type describes a group of related commands. A command is deemed to
be a child of an earlier command if its indentation is greater. To express this constraint,
section is parameterized by the expected minimum indentation, and its identation is
checked against the parameter. The section type is a record with three fields. The
first field indent describes the indentation preceding every command. It detects a
decrease in indentation level signals, which signals the end of a command group, using
a constraint. The second field, start_cmd, describes the first command of the section,
and the third field, sub_cmds, describes the list of its subcommands.

The plist constructor defining the subcommand list takes three parameters: on the
left, the element type; on the right, an optional separator that delimits list elements, and
an optional terminator. In this example, the list has no separators; it terminates when it
encounters an element with an error. Next, config_element uses a variant type to
indicate that an element of a configuration file can be either a section or a comment
line. Lastly, the type source describes a complete Cisco configuration file as a list of
elements with no separator and no special terminator. It is terminated with the default
terminator of the end-of-file.
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type source = Config_element.rep plist
type source_pd_body = Config_element.pd_body plist_pd_body Pads.pd
module Source :
sig

type rep = source
type pd_body = source_pd_body
type pd = pd_body Pads.pd
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
module MakeTyrep (GenFunTys:GenFunTys.S) : sig

val tyrep : ...
end
...

end

Fig. 4. Selected software artifacts generated from the source type

2.2 Compiling PADS/ML

Given a description, the PADS/ML compiler creates an OCAML library containing types
for the in-memory representation and for the parse-descriptor body for each type in the
PADS/ML description. It also contains a module with functions for parsing and printing
the data, and a functor for creating a runtime representation of the types. Figure 4 shows
the signature of the module produced for the type source from Figure 3.

For reference, we note that the structure of the parse descriptor reflects that of the
representation. Every parse descriptor has a header with meta data describing the en-
tirety of the corresponding representation (error information, etc.), and a body, con-
sisting of descriptors for each subcomponent. Therefore, every parse descriptor has the
type pd_header * ’pdb, for some parse-descriptor body type ’pdb. We use the
abbreviation ’a pd = pd_header * ’a to express this structure.

3 Generic Programming for Ad Hoc Data

In a data-processing pipeline, several steps typically occur between parsing and
printing. Some steps may be application specific, but many others can be expressed
generically and applied to data of any type. Examples include compression and decom-
pression, pretty printing, flattening, database formatting, cleaning, querying, conver-
sion to and from generic formats such as XML and S-expressions, summarization, data
generators (e.g., for testing), and transformations like those described in the “scrap-
your-boilerplate” series [LP03, LP04, LP05]. Given the variety and number of generic
operations, we wish to provide third-party developers with a mechanism to express such
operations, without having to modify the PADS/ML compiler.

We use the term “generic” to mean type indexed. A type-indexed function defines
a family of functions, with one member of the family for every type in the index. A
type-indexed function can be constrasted with a polymorphic function, which is a sin-
gle function that can be used at many different types. Because PADS/ML descriptions
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type summary = ... (* uniform data summary type. *)
type seed = ... (* seed value used in data generation. *)
(’r,’b) pretty_print = ’r -> ’b Pads.pd -> string
(’r,’b) flatten = ’r -> ’b Pads.pd -> (string * string) list
(’r,’b) decompress = in_channel -> ’r * (’b Pads.pd)
(’r,’b) summarize = ’r -> ’b Pads.pd -> summary -> summary
(’r,’b) clean = ’r * ’b Pads.pd -> ’r * ’b Pads.pd
(’r,’b) generate = seed -> ’r * (’b Pads.pd)

Fig. 5. Type constructors for selected generic functions

consist of types, it is natural to express algorithms that are generic to any description as
functions indexed by the types of the in-memory representation and the parse descriptor.

Previously, we introduced a generic-tool framework for PADS/ML to support third-
party tool development [MFW+07]. While this framework was sufficient to code a num-
ber of useful functions, it had limitations. Specifically, it only supported functions that
could be implemented by consuming the in-memory representation of PADS/ML data in
a single depth-first, left-to-right traversal.

In this section, we present a fully redesigned framework that supports a much broader
range of generic functions. We begin with an overview of our new framework. Then,
we provide two examples of how the system is used, from the perspectives of both the
user and the tool developer. Finally, we will describe the implementation of the generic
tool framework, including the details of type representations.

3.1 Overview

In our generic-programming architecture, three different “actors” cooperate to build
and use each generic function f : the end user, the PADS/ML compiler, and the tool
developer. When a user wants to apply a generic function f to data of a particular type
τ , she needs to specialize f to τ , that is, select the member of f appropriate to τ . We
use the notation f [τ ] to denote this member. Note that for every type-indexed function
f , there is a type constructor σ that relates the type indices of f to the types of members
of f—specifically, f [τ ] : σ(τ). For example, Figure 5 lists type constructors for some
useful generic functions.

While, conceptually, specialization involves types τ , in reality, OCAML provides no
way to manipulate, or even access, types in code. Therefore, we must encode type in-
dexes as runtime values, which we call type representations. A function specialize,
defined in the PADS/ML runtime, instantiates generic functions to particular types using
the type’s runtime representation. All type representations are built from a set of com-
binators, which we will describe in greater detail at the end of this section. In principle,
the user can use the combinators to construct type representations by hand. In practice,
though, such constructions are tedious boilerplate and therefore best generated auto-
matically. Therefore, the PADS/ML compiler generates the runtime representations for
each PADS/ML type, along with all of the other generated software artifacts.

The tool developer is responsible for writing f as a type-indexed function. In OCAML,
a natural way to express such functions is by pattern matching on a representation of
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<Left>
<fst>""</fst>
<snd>
<fst><fst>version</fst><snd>12.0</snd></fst>
<snd/>

</snd>
</Left>

Fig. 6. Cisco config command version 12.0 encoded in XML using a canonical, sums-of-
products schema

the type. Therefore, the developer implements f by specifying the generic function’s
behavior for each PADS/ML type constructor, including base types, records, tuples, vari-
ants, and user-defined types. Note that the role of “tool developer” might be played by
a range of users, from PADS/ML developers to data analysts. Our goal is that tool devel-
opers should not need any expertise in PADS/ML internals to be productive, although we
do expect a higher level of programming expertise for tool developers than for average
PADS/ML users.

3.2 Example: Conversion to XML

We begin with an example use of a generic function to_xml that translates any PADS

data to a corresponding canonical XML representation.1 This canonical representation
uses one schema to encode all data as anonymous sums of products. We explain our
choice of this simple encoding when we dicuss the implementation of to_xml.

In the example, the end-user wants to translate Cisco configuration data into XML,
so she needs to specialize the generic function to_xml to the source type from the
Cisco description of Figure 3. The user might perform this conversion as follows:

module SourceTyrep = Cisco.Source.MakeTyrep(TXTys)
let source_to_xml = specialize to_xml SourceTyrep.tyrep
let r,pd = ... Cisco.Source.parse ... ;;
let source_xml = source_to_xml r pd "Config"

In the first line, she creates a representation of the type source by applying the
functor MakeTyRep, generated by the compiler for this purpose, to the module TXTys
defined by the to_xml tool writer to specify the type structure of that tool. In the
second line, she specializes the generic function to_xml to the type source, creating
the function source_to_xml. She then parses the configuration file to create a data
representation r and its corresponding parse descriptor pd. Finally, she applies the
specialized conversion function to r, pd, and a tag for the resulting XML element,
yielding an XML representation of the data. Figure 6 shows the result of converting the
command “version 12.0” in Figure 2 into XML using the to_xml function.

Next, we turn to the tool developer’s task of implementing the generic function
to_xml. Figure 7 shows an excerpt of the code. The first four lines define the type

1 We presume a type xml with two constructors: PCData, for atomic values, and Element,
for structured values; and a pretty-printer for such values.
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module ToXMLTycon =
struct

type (’a,’pdb) t = ’a -> ’pdb pd -> string -> xml
end
module TXTys = GenFunTys.MakeGeneric(ToXMLTycon)
let rec to_xml = { TXTys.

int = (fun i (hdr,()) tag ->
Element(t,[PCData(string_of_int i)]));

tuple = (fun a_ty b_ty (a,b) (hdr,(a_pd,b_pd)) tag ->
let a_xml = specialize to_xml a_ty a a_pd "fst" in
let b_xml = specialize to_xml b_ty b b_pd "snd" in

Element(tag,[a_xml;b_xml])
);
sum = (fun a_ty b_ty v (hdr,v_pdb) tag ->

match v,v_pdb with
Left a, Left a_pd ->

Element(tag,[specialize to_xml a_ty a a_pd "Left"])
| Right b,Right b_pd ->

Element(tag,[specialize to_xml b_ty b b_pd "Right"])
);
defined = (fun a_ty (from_t, to_t) (from_pdb, to_pdb)

t (hdr,t_pdb) tag ->
specialize to_xml a_ty (from_t t) (hdr,(from_pdb t_pdb)) tag

);
}

Fig. 7. Excerpt of a generic converter to XML

constructorTXTys, which describes the types of the specializations of the generic func-
tion to_xml. The implementation of the generic function follows. It is actually a record
with one field for each type constructor that can appear in a type index. Each field de-
fines a function that specifies how the generic function behaves for the corresponding
type constructor.

For the sake of brevity, we have simplified the implementation of to_xml. In the
full implementation, there are cases for most of OCAML’s base types and a default case.
The cases for sums and products have additional parameters to support n-ary sums
and products with field and constructor names, and nullary constructors, thereby fully
supporting OCAML’s named records and variant types. Additionally, parse descriptor
headers are included in the XML when they indicate an error in the data.

The case (i.e., field) for integers,int, takes the representation of a parsed integer and
its parse descriptor as arguments. It returns a representation of that integer wrapped in
the XML constructor PCData. More interesting is the field tuple, which corresponds
to the case for binary products. The first two arguments, a_ty and b_ty, represent the
types of the tuple components. They are used to specialize to_xml for use with those
components. The next two arguments are the tuple to be converted and its parse descrip-
tor. The last argument is the tag to be used when constructing the XML element. The
first two lines of the function body translate the components into XML by specializing
to_xml to the type of each tuple component and applying the result to the appropriate
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module FromXMLTycon =
struct

type (’a,’pdb) t = xml -> (’a * ’pdb pd)
end
module FXTys = GenFunTys.MakeGeneric(FromXMLTycon)
let rec from_xml = { FXTys.

int = (fun Element(_,[PCData(s)]) ->
try int_of_string s, (good_hdr,())
with Failure "int_of_string" -> 0, (error_hdr,()));

tuple = (fun pos a_name a_ty b_ty Element(_,[a_xml;b_xml]) ->
let (a,a_pd) = a_ty from_xml a_xml in
let (b,b_pd) = b_ty from_xml b_xml in

(a,b),(valid_hdr,(a_pd,b_pd))
);
sum = (fun pos a_name a_ty a_empty b_ty b_empty -> function

Element(_,[Element("Left",_) as a_xml]) ->
let a,a_pd = a_ty from_xml a_xml in
Left a, (valid_hdr, Left a_pd)

| Element(_,[Element("Right",_) as b_xml]) ->
let b, b_pd = b_ty from_xml b_xml in
Right b, (valid_hdr, Right b_pd)

);
defined = (fun a_ty (from_t, to_t) (from_pdb, to_pdb) a_xml ->

let a,(h,a_pdb) = a_ty from_xml a_xml in
(to_t a),(h,to_pdb a_pdb)

);
}

Fig. 8. Generic converter from XML

component. Note that this “appropriateness” is statically checked by the OCAML com-
piler (that is, unless the components have the same type, inverting the type representa-
tions will result in a type error.) Finally, the XML for the components is bundled into a
single element with the tag specified by the final argument.

The case for binary sums follows the same pattern as that of binary tuples. For user-
defined types, we borrow from Hinze [Hin04], requiring the tool writer to use functions
that convert between the user-defined type and a sum-of-products type (similarly for
the parse descriptor). These compiler-generated conversions are supplied by the caller
of the tool as the second and third arguments of the defined field (the first argument
is a representation of the sum-of-products type). In our example, we are mapping from
a type to XML, so we use the “from” conversion function.

3.3 Example: Conversion from XML

A significant improvement in the new generic interface for PADS/ML is that it does
not limit developers to writing functions that consume data. To illustrate this point, we
define in Figure 8 the implementation of a generic function from_xml that produces
data of a given type from XML input.
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The implementation mirrors that of to_xml. The first four lines specify the type
constructor for the generic function and create the type of the from_xml generic func-
tion. The field definitions for from_xml follow the same pattern as those for to_xml,
producing data rather than consuming it. One difference relates to parse descriptors.
The type constructor for from_xml requires a parse descriptor along with the recon-
structed data. But we discarded such descriptors when converting to XML, so we need
to recreate them now. In most cases, we simply provide a place-holder valid_hdr to
indicate the data is error free. For the int field, however, we check that the string in
the XML is a valid integer and report errors using the parse descriptor.

3.4 Other Generic Functions

All our example tools are self contained in that they make no reference to other generic
functions. Our framework, however, permits generic functions that depend on other
generic functions, and even mutually recursive generic functions. The only limitation is
that such functions must all share the same generic-function type constructor.

3.5 Type Representations

We now discuss the implementation of type representations, reusing theto_xml generic
function from above for an example. The tool developer implemented to_xml as a
record with one field for each type constructor. The end user specialized this generic
function implementation to a particular PADS/ML type τ by applying the specialize
function to a representation of the type τ . The expression specialize to_xml has
the polymorphic type

specialize to_xml : (’r,’p) tyrep -> ’r -> ’p pd -> xml

Notice that the type constructor σ of to_xml is expressed implicitly in this type.
While the runtime provides the definition of the specialize function, it is the

task of the compiler to produce the representation of the PADS/ML type τ . Following
Yang’s approach [Yan98], we choose to represent each PADS/ML type τ as a function
that takes as an argument a generic function, (i.e., a record of functions, each field
specifying the behavior of the generic function for one type constructor) and selects the
field of the generic function corresponding to τ . If τ is a simple type, that is all the
type representation function need do. If τ is a type constructor, the type representation
function then applies the selected function to the representations of the arguments of
the type constructor.

For example, the representation of the PADS/ML type (pint*pint) is:

fun gf -> gf.tuple (fun gf -> gf.int) (fun gf -> gf.int)

This function takes a generic function gf as an argument and selects the tuple field.
Because tuples are type constructors with two arguments, the type representation func-
tion for the pair then applies this selected function to the type representation of the
arguments, pint. This representation type function simply selects the int field from
the generic function gf.
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type to_xml_record = {
int : int -> unit pd -> xml
tuple : ’a ’b ’p ’q. (’a,’p) type_rep -> (’b,’q) type_rep

-> (’a * ’b) -> (’p pd * ’q pd) pd -> xml
sum : ’a ’b ’p ’q. (’a,’p) type_rep -> (’b,’q) type_rep

-> (’a,’b) sum -> (’p pd,’q pd) sum pd -> xml
defined : ’a ’p ’u ’q. (’a,’p) type_rep -> (’a,’u) iso

-> (’p,’q) iso -> ’u -> ’q pd -> xml
}
and (’r,’p) type_rep = to_xml_record -> ’r -> ’p pd -> xml

Fig. 9. The type of to xml

With this choice for the representation of types, the definition of the specialize
function is trivial— it is just function application: fun gf ty -> ty gf. This one
definition handles all generic functions and all type representations. In contrast, the
compiler must generate a different type representation for each PADS/ML type in a
description.

The type system of OCAML ensures that the application of a generic function to a type
representation will never go wrong, but getting our choice for type representations as
functions to typecheck in OCAML takes a bit of engineering. To illustrate, we again turn
to the to_xml example. Figure 9 defines the type to_xml_record, which is the type
of the generic function implementation to_xml. Notice that the record fields contain
first-class polymorphic functions. This flexibility is essential because the representation
of a PADS/ML type might need to apply the same field to several distinct types, e.g., for
a PADS/ML type containing more than one kind of tuple. Figure 9 also defines the type
constructor type_rep, which is the type of the representation of all PADS/ML types
for the to_xml generic function. As an example, the type of the representation of the
the PADS/ML type (pint*pint) is

to_xml_record -> int*int -> (int_pd*int_pd) pd -> xml

which is just (int*int,int_pd*int_pd) type_rep.

3.6 Tool-Independent Type Representations

The types in Figure 9 describe the to_xml generic function very precisely; too pre-
cisely, in fact. Those types and the type representations built from them are specific to
to_xml and could not be used for other generic function, for example, from_xml.
To support a wide range of different generic functions, we follow Yang’s approach and
provide tool-independent type representations and record types, by abstracting away the
pieces that are particular to each generic function. Specifically, we must abstract away
the type constructor associated with the generic function.

Here we encounter a problem: abstracting over a type constructor requires support for
higher-order polymorphism, a feature not provided in OCAML’s core language. There-
fore, we turn to OCAML’s module system and use a functor to do the abstraction. Fig-
ure 10 shows a simplified excerpt of such a functor, MakeGeneric, provided by the
PADS/ML runtime. This functor defines the type of the representation of PADS/ML types
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type ’a pd = pd_hdr * ’a
type (’a,’t) iso = (’t -> ’a) * (’a -> ’t)
type (’l,’r) sum = Left of ’l | Right of ’r
module MakeGeneric(GenFunTycon: sig type (’r,’pdb,’s) t end) :
sig

type (’r,’pdb,’s) gf_tycon = (’r,’pdb,’s) GenFunTycon.t
type ’s gf_record = {

int : (int, unit, ’s) gf_tycon;
tuple : ’a ’b ’a_pdb ’b_pdb.

(’a,’a_pdb,’s) type_rep ->
(’b,’b_pdb,’s) type_rep ->
(’a * ’b, (’a_pdb pd * ’b_pdb pd) pd, ’s) gf_tycon;

sum : ’a ’b ’a_pdb ’b_pdb.
(’a,’a_pdb,’s) type_rep ->
(’b,’b_pdb,’s) type_rep ->
((’a,’b) sum, (’a_pdb pd,’b_pdb pd) sum pd, ’s) gf_tycon;

defined : ’a ’r ’a_pdb ’r_pdb.
(’a,’a_pdb,’s) type_rep ->
(’a,’r) iso -> (’a_pdb,’r_pdb) iso ->
(’r,’r_pdb,’s) gf_tycon;

}
and (’r,’pdb,’s) type_rep =

’s gf_record -> (’r,’pdb,’s) gf_tycon
end

Fig. 10. A simplified excerpt of the signature of functor MakeGeneric for making generic-
function types. This functor is located in the GenFunTys module, which is part of the PADS/ML

runtime.

type_rep and the type of the generic-function record for all generic functions associ-
ated with the type constructor t, passed as an argument to the functor. Conceptually, the
types we described earlier in this section, to_xml_type, etc., result from applying
this functor, although in doing the abstraction, we added a parameter to the type con-
structor t so that a single instance of this functor will be able to express the necessary
types for a wider range of generic functions. Note that we have simplified the presen-
tation of this functor in the same way that we simplified to_xml and from_xml –
specifically, we have left out a number of cases and the parameters to tuple and sum
that provide full support for OCAML’s records and variant types.

The issue of higher-order polymorphism arises in the definition of the representa-
tion of PADS/ML types as well because the representations reference the labels of the
generic-function record. Hence, the definition of the representation of each PADS/ML

type is given in a compiler-generated functor MakeTyrep, parameterized by the type
of the generic function.

To summarize, the generic function infrastructure provided by PADS/ML has three
main components: the functionspecialize and the functorMakeGeneric, defined
once, and the functorMakeTyrep, which is generated for each PADS/ML type in a given
description. A tool developer writing a generic function with associated type constructor
σ uses the functor MakeGeneric to produce the type of the generic function that she
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(’a, ’pdb, ’s) consumer = ’a -> ’pdb Pads.pd -> ’s
(’a, ’pdb, ’s) producer = ’s -> ’a * (’pdb Pads.pd)
(’a, ’pdb, ’s) updater = ’a * ’pdb Pads.pd -> ’a * ’pdb Pads.pd
flatten : (’a,’pdb,(string * string) list) consumer
pretty_print : (’a,’pdb, string) consumer
summarize : (’a,’pdb, summary -> summary) consumer
to_xml : (’a,’pdb, xml list) consumer
decompress : (’a,’pdb,in_channel) producer
generate : (’a,’pdb, seed) producer
from_xml : (’a,’pdb, xml list) producer
clean : (’a,’pdb,unit) updater

Fig. 11. Classes of generic functions

must define. The user of the generic function uses the functor MakeTyrep to produce
a representation of the PADS/ML type suitable for use with that generic function.

An apparent disadvantage of this functorized approach is that a given type represen-
tation can only be applied to one generic function – the one corresponding to the type
constructor for which it was instantiated. However, this limitation is not as restrictive
as it might seem. The type constructor at which a type representation is instantiated
can be far more general than a single generic function and can encompass a family
of functions using the extra type parameter ’s. For example, Figure 11 shows how to
rewrite the function types in Figure 5 in terms of only three generic function classes:
consumers, producers, and updaters.

4 Case Studies

Converting ad hoc data to XML is only one of many possible applications of our generic
function framework. In this section, we discuss two other uses of the framework.

4.1 PADX/ML

In previous work [FFGM06], we reported on our experience designing and implement-
ing PADX, a system for querying large-scale PADS data sources with XQuery [Kat04],
a standardized query language for XML. PADX synthesizes and extends two existing
systems: PADS/C and Galax [FSC+03]. With PADX, an analyst writes a PADS descrip-
tion of her ad hoc data, and the PADS/C compiler produces two software artifacts: an
XML Schema that specifies the virtual XML view of the corresponding PADS data and a
customized library for viewing it as XML. The resulting library is linked with the Galax
query engine, permitting the analyst to query ad hoc data sources using XQuery.

We were pleased with PADX’s functionality. The unified system gave us a standard,
high-performance engine for querying ad hoc data without having to build one from
scratch. We were frustrated, however, by the implementation and its limitations. We
made substantial modifications to the PADS/C compiler to generate PADX’s software
artifacts, which required 1050 lines of Standard-ML, 2117 lines of C, and 350 lines
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of OCAML. The generated libraries were large, e.g., the library for the Sirius descrip-
tion [FG05] was more than 7000 lines of C and used C macros extensively, making
the code hard to understand and debug. Most significantly, the changes only supported
PADX and were incomplete: PADX can map from PADS data to XML but not vice versa.

Using the generic tool framework, the implementation of PADX/ML is more com-
plete, simpler, and more flexible than that of PADX. The PADX/ML consumer tool maps
PADS/ML representations and parse descriptors into values in Galax’s abstract XML data
model (XDM) (i.e., sequences of elements and XML scalar values), and the PADX/ML

producer tool does the inverse, enabling the output of XQuery expressions to be repre-
sented as PADS data. Together, the tools are implemented in only 884 lines of OCAML.

The PADX consumer yields a completely lazy tree, which permits the Galax query
engine to cope with large-scale data more efficiently. Each XML element in Galax’s
XDM roughly corresponds to a node in the consumer’s lazy tree. The consumer is lazy
“all the way down”, that is, the consumer does not parse a PADS element in a data source
until its corresponding node in the XDM is forced. This laziness is important to query
performance. For some queries, Galax can produce query plans that access a virtual
XML source sequentially using memory bounded by the query size, not the data size.
This optimization is only possible if the underlying data source is itself lazy.

The PADX producer maps values in the Galax XDM into PADS/ML. Given a pro-
ducer specialized on a type and an XML value in the Galax XDM, the producer simply
performs a pattern match on the XML value to map it into the corresponding PADS/ML

value. When a match fails, a parse-descriptor header is returned, indicating a syntax
error. To apply a producer, however, requires knowing the correspondence between an
XML value and an extant, unparameterized PADS/ML type. This correspondence can be
recovered by validating an XML value with respect to any PADS/ML-generated XML

Schema, as each XML Schema type corresponds one-to-one with a PADS/ML type. If
validation succeeds, the XML value is labelled with its corresponding XML Schema
type. The compiler produces a meta-data table that given an XML Schema type name
selects a specialized producer for the corresponding PADS/ML type.

We did make one modification to the PADS/ML compiler for PADX to generate the
XML Schema for a PADS/ML specification. A generic type-consumer tool would avoid
this problem, by permitting computation over any PADS/ML type, just like the generic
value-consumer tool permits computation over the representations and parse descriptors
of any PADS/ML value. No technical issue prevents us from providing a generic type-
consumer tool, but it is not yet implemented.

4.2 Harmony

In our second case study, we use our generic infrastructure with the Harmony syn-
chronization framework [PBF+]. An instance of Harmony takes as inputs two repli-
cas containing data to be synchronized, an archive representing their last synchronized
state, and a schema describing the set of well-formed replicas. Harmony’s synchro-
nization algorithm merges non-conflicting changes made to each replica relative to the
archive and subject to the constraints expressed in the schema, and produces as outputs
maximally-synchronized replicas (and an updated archive). Harmony instances exist for
synchronizing browser bookmarks, calendars, address books, and structured documents.
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{Section={indent={""},
start_cmd={elt1={version={}},

elt2={"12.0"={}}}}}

Fig. 12. Cisco config command version 12.0 encoded as an unordered tree

To simplify the synchronization algorithm—in particular, the task of aligning and
identifying the common data in each replica—Harmony’s internal data model is un-
ordered trees and not a richer model like XML. Working with unordered trees makes
synchronization simpler, but introduces a “last-mile problem”—most data is not stored
as unordered trees. Therefore, before the replicas can be processed using Harmony they
need to be parsed, and likewise after synchronization, the updated replicas must be se-
rialized to their original formats. Harmony currently relies on a collection of custom
“viewers”—i.e., parsers and corresponding pretty printers—for a variety of on-disk for-
mats (XML, CSV, iCalendar, and Palm Datebook) to bridge this gap. These viewers are
not ideal, however, being tedious to write and difficult to maintain. Moreover, every
new format requires its own custom viewer. A better solution is to use a generic tool to
generate a viewer from a PADS description.

We have implemented generic tools for the unordered tree data model analagous to
the to_xml and from_xml tools for XML. The generic consumer takes a PADS rep-
resentation of a data value and yields a Harmony tree. The generic producer maps a
Harmony tree back to a PADS representation. The representation of a data value as an
unordered tree is determined by its type: base type values are represented as trees with
a single child whose label encodes the value; records are represented as trees with a
child for every field; a value belonging to a variant type is represented as a tree with
a single child whose label is the tag; and lists are represented using a cons-cell encod-
ing. Figure 12 shows how the Cisco line from the earlier example is represented as an
unordered tree (writing “{” for internal tree nodes and “=” for subtrees).

These generic tools provide effective conduits between arbitrary on-disk representa-
tions of ad hoc data described in PADS and Harmony’s internal data model. We plan to
use them to build Harmony instances for several new data formats in the near future.

5 Discussion

Our generic programming framework combines two existing techniques: Yang’s theo-
retical account of type-indexed values and their encoding in ML-like languages using
the ML module system [Yan98], and Hinze’s framework for generic programming using
Haskell’s type classes [Hin04]. We compare our work to these approaches in turn.

We make a number of improvements to Yang’s original presentation. First, his theo-
retical encoding requires first-class polymorphism, which at the time was only available
in the ML module system. Now that OCAML provides first-class polymorphism within
records, his encoding can be expressed in a significantly more lightweight manner. Sec-
ond, we have generalized his theoretical encoding to support the definition of generic
functions based on other generic functions. Finally, Yang did not support user-defined
recursive types, which we address using techniques based on Hinze’s work.
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While Yang’s work showed how to implement generics in OCAML, Hinze’s work is
the most closely related in terms of the interface it provides to users and generic function
developers. The essential difference between Hinze’s framework and our own is that
Hinze’s solution works for Haskell, while ours is for OCAML. This difference manifests
itself most notably in that Hinze uses Haskell’s type classes to parameterize over type
constructors, and so he manages type representations implicitly as dictionaries. We use
OCAML’s module system for parameterization and our type representations must be
passed explicitly, which provides more control over instantiation at the price of some
syntactic overhead. An important practical but less essential difference is that we have
adapted our system for use with PADS/ML, incorporating parse descriptors and requiring
tools to implement a case for constrained types.

The “scrap-your-boilerplate” series of papers [LP03, LP04, LP05] presents another
approach to generic programming in HASKELL. Recently, members of the Gallium
project have added support for similar functionality to OCAML with the new camlp4
system [cam]. We refer readers to the SYB papers for a full comparison of SYB to
other generic-programming approaches, including this one.

Shortly before this paper was ready for publication, Yallop [Yal07] and Karvonen
[Kar07] published works on generic programming in ML. Due to lack of time to fully
review their work, we offer only basic comparisons. Yallop’s work uses camlp4 – an
OCAML preprocessor – to extend OCaml with a deriving construct, similar to that found
in Haskell. As Yallop points out in his conclusion, while this approach offers a conve-
nient way to use the generic functions, it does not address the challenge of writing new
generic functions, which is exactly the goal of the current work. Karvonen’s work is
more closely related in that it supports generic programming within ML itself, rather
than in a preprocessor. However, Karvonen is working within the confines of Standard
ML, which lacks recursive values and first-class polymorphism. Hence, the challenges
he faces are somewhat different, as is his resulting solution.

The most direct contributions of the present work are both related to PADS/ML: the ex-
tension of PADS/ML’s support for third-party development of type-directed tools and the
description of two non-trivial tools built using this extension. However, both of these con-
tributions have broader relevance. The latter, because PADX/ML and extended Harmony
provide compelling examples of the applicability of generic programming techniques to
real-world challenges. The former, because the generic programming framework that we
present is relevant to OCAML developers in general, not just those interested in PADS/ML.
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Abstract. Pattern matching is a programming language feature for selecting a
handler based on the structure of data while binding names to sub-structures.
By combining selection and binding, pattern matching facilitates many common
tasks such as date normalization, red-black tree manipulation, conversion of XML
documents, or decoding TCP/IP packets. Matchete is a language extension to
Java that unifies different approaches to pattern matching: regular expressions,
structured term patterns, XPath, and bit-level patterns. Matchete naturally allows
nesting of these different patterns to form composite patterns. We present the
Matchete syntax and describe a prototype implementation.

Keywords: Pattern matching, regular expressions, XPath, binary data formats,
Java.

1 Introduction

Recognizing patterns in data is a recurrent problem in computer science. Many pro-
gramming languages and systems provide syntax for pattern matching. Functional
programming languages emphasize matching over data types, and support defining
functions as sequences of cases over the structure of their parameters. String-oriented
languages such as AWK or Perl come with builtin support for pattern matching with a
powerful regular expression language. XML processing systems often support extract-
ing sub-structures from a document. Finally, some languages support matching of bit-
level data to extract patterns in network packets or binary data streams. While pattern
matching constructs differ in terms of syntax, data types, type safety, and expressive
power, they share the common characteristic of being able to conditionally deconstruct
input data and bind variables to portions of their input. This paper is a step towards
a unified pattern matching construct for the Java programming language. Our exper-
imental compiler, called Matchete, supports the different flavors of pattern matching
mentioned above as well as user-defined patterns.

Below is a simple example that illustrates the expressive power of Matchete. The
method ��������� expects a list of strings containing a name and an age, encoded as
a sequence of letters followed by a seqence of digits. It traverses the list until it finds a
value matching its ��
� argument. If found, it converts the associated age to an integer
and returns it. This function showcases a number of features of Matchete. The 
����

statement extracts the value from a ��
� object. A nested pattern specifies a regular
expression and at the same time performs string comparison against the value of ��
�.
Its ��� field is implicitly converted from a ������ to a primitive ���.
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int findAge(String name, List l) {
match(l) {
cons˜(/([a-zA-Z]+) ([0-9]+)/(name, int age), _): return age;
cons˜(_, List tail): return findAge(name, tail);
}

return -1;
}

Matchete’s contribution is a seamless and expressive integration of the major flavors
of pattern matching with a straightforward syntax and semantics. This should be con-
trasted with many recent efforts that focus on a particular pattern matching style, for
example, functional-style patterns in an object-oriented language [5,19,20]. In Match-
ete, functional-style term patterns, Perl-style regular expressions, XPath expressions,
and Erlang-style bit-level patterns can contain one another, and use the same small set
of primitive patterns at the leaves. Matchete is a minimal extension to Java, adding only
one new statement, one new declaration, and one new kind of expression to the base
language. We have implemented a fully functional prototype and have validated the
applicability of Matchete by a number of small case studies. The Matchete prototype
compiler performs no optimizations, we leave this to future work.

2 Related Work

Structured term pattern matching is a central feature of functional programming lan-
guages. In languages such as ML [22] or Haskell [17], instances of algebraic data types
can be constructed and deconstructed using the same constructors. The simplicity and
elegance of the approach is tied to having a relatively simple data model in which the
definition of a data type suffices to automatically define constructors that can be in-
verted to deconstructors. Object oriented languages introduce abstract data types, and
even where constructors could be automatically inverted, this would violate encapsula-
tion and interact poorly with inheritance. A number of recent works have investigated
extensions to object-oriented languages that allow pattern matching over abstract data
types. Views are implicit coercions between data types that are applied during pattern
matching [27]. Active patterns [26] for F# generalize views to functions that decon-
struct values into an option type—either ���� values if the input value can be decon-
structed or ����. Active patterns can be used just like regular structural pattern match-
ing on data types. Scala’s extractors [5] are a form of active patterns for objects. PLT
Scheme’s match form allows adding new pattern matching macros, which can be used
to support other kinds of pattern matching by supplying an expansion to the primitive
matching forms [29]. Tom is a preprocessor that adds structured term pattern match-
ing to Java, C, and Eiffel [23]. OOMatch [25] and JMatch [20] are Java extensions.
OOMatch allows pattern declaration in method parameters and resembles Matchete in
its treatment of extractors. JMatch provides invertible methods and constructors, which
serve to deconstruct values during pattern matching, and also support iteration and logic
programming.

String pattern matching is a central feature of text-processing languages such as
SNOBOL [12] and Perl [28]. While the Java standard library provides an API for Perl-
style regular expressions, which are familiar to many programmers, this API can be
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awkward to use and leads to code that is considerably more verbose than an equivalent
Perl program. Matchete addresses this shortcoming by integrating Perl regular expres-
sions directly in the language.

Bit-level data manipulation has traditionally been the domain of low-level languages
such as C. Some recent work takes a type-based approach for parsing bit-level data
[1,4,7]. The Erlang programming language, on the other hand, allows specifying bit-
level patterns directly. Erlang’s patterns are widely used for network protocols, and are
optimized [14]. Matchete follows the Erlang approach.

XML pattern matching comes in two flavors: XPath expressions and semi-structured
terms. XPath expressions are paths through the tree representation of an XML doc-
ument that specify sets of nodes [3]. XPath is the primary matching mechanism of
XSLT, and Matchete supports XPath directly. Several recent languages treat XML as
semi-structured terms [2,8,15,16,18,19,21]. These languages support patterns similar to
structured term patterns in functional languages, in some cases augmented by Kleene
closure over sibling tree nodes. Matchete also supports structured term patterns.

What sets Matchete apart from this previous work is that it integrates XPath and
structured term matching with each other and with Perl-style regular expressions and
bit-level patterns.

3 The Matchete Language

Matchete extends Java with a 
���� statement with the following syntax:

MatchStatement ::= 
���� � Expression � { MatchClause* }
MatchClause ::= MatchPattern � Statement

A 
���� requires an Expression (the subject of the match) and zero or more Match-
Clauses. Each MatchClause has the form MatchPattern � Statement, where the
MatchPattern guards the execution of the Statement (or handler), and may make some
bindings available for the handler. The syntax deliberately resembles that of the Java

 ���� statement, with three important differences: there is no need to write ��
� be-
fore each clause, each handler consists of a single statement (which may be a block),
and the ����� keyword is not used to prevent fall-through. This last difference is moti-
vated by software engineering concerns (it is a common mistake to forget a �����), and
by the need to provide a well-defined scope for variables bound by patterns.

A common beginner’s exercise in functional languages is to write a recursive func-
tion 
��� that multiplies the elements of a list. List multiplication has a simple re-
cursive definition: multiply the first element with the result of multiplying the rest of
the list. For example, 
����!"� #$� % "&
����!#$� % "&#&
����!$�. The last factor,

����!$�, requires a base case: for an empty list the function returns 1, the multiplica-
tive identity. Of course, if any number in the list is zero, the entire product will be zero
and the rest of the list need not be evaluated.

Fig. 1 shows the Matchete definition of 
���. The match statement matches the pa-
rameter �
 against two clauses. The first clause handles the case when the value at the
head of the list is zero. The second clause extracts the head of the list, �, and the tail
of the list, �, and multiplies � by the result of recursively calling 
��� on �. If the list
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1 int mult(IntList ls) {
2 match (ls) {
3 cons˜(0, _): return 0;
4 cons˜(int h, IntList t): return h * mult(t);
5 }

6 return 1;
7 }

Fig. 1. List multiply in Matchete

is empty, neither clause matches, and 
��� returns 1. The method ���
'�� is a user-
defined deconstructor of the (����
� class that extracts the head and the tail of a list.

This example illustrates four kinds of patterns: wildcard ( matches anything), values
(0 matches the integer zero), binders (��� � matches any integer and binds it to �), and
deconstructor patterns (���
'�� matches composite data, extracts its parts, and dele-
gates said parts to nested patterns).

3.1 Evaluation Order

Matchete defines a deterministic order of evaluation for patterns. A match statement
evaluates match clauses sequentially in textual order until a clause succeeds. Each
clause evaluates patterns sequentially in textual order until either a pattern fails, or con-
trol reaches the handler statement.

Each pattern, whether simple or composite, operates on a subject. The expression
on which the match statement operates becomes the subject for the outermost pattern
of each match clause. Composite patterns provide subjects for their children (nested
patterns) to match on. Consider the following clause where the outer ���	
 supplies its
two nested patterns with subjects:

cons˜(1, cons˜(int x, IntList y)): print("1::"+x+"::"+y);

Each pattern also has a unique successor. The succes-

cons~

cons~1

int x IntList y

print("1::" + x + "::" + y);

1 5 3 2

5 3 2

3 2

1

5

Fig. 2. Evaluation order

sor of a pattern is the next pattern to run if the match
has been successful through the given pattern. In other
words, each pattern determines whether its successor
runs, or whether to branch to the next clause, if any.
The successor of the last pattern in a match clause is
the handler.

Fig. 2 illustrates match statement evaluation order:
composite patterns have solid edges to child patterns
(nesting edges), and each pattern has a dotted edge to
its successor (branching edges). Subjects flow along

nesting edges, bindings flow along successor edges. Nesting edges are labeled with
subjects flowing from parent to child patterns. For example, if the match statement op-
erates on the list !)�*�#�"$, that list becomes the subject of the outermost pattern. Each
parent pattern extracts subjects for its children to match on. In this case, the number )
flows to the left child, and the sublist !*�#�"$ flows to the right child. Successor edges
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chain all patterns in the nesting tree in a preorder depth-first traversal. This means that
pattern matches are attempted in textual order, left-to-right. If a pattern succeeds, it
branches to its successor, otherwise, it branches out of the current match clause. The
successor of the last pattern is the handler, in this case, the +���� statement.

3.2 Type Conversions

Because there can be a mismatch between the type of the data under consideration and
the most convenient type for manipulating that data in the handler, Matchete provides
support for automatic type conversions. For example, Java programs may store boxed
(������ values, yet in order to perform arithmetic, these must be unboxed. Matchete
will do the unboxing for the programmer as part of pattern matching. Likewise, XML
DOM trees contain text nodes, which the handler may want to manipulate as strings.
Pattern matching also makes a branching decision, and it is often convenient to consider
the type in that decision. For example, catch clauses in Java try/catch statements per-
form a limited form of pattern matching, converting the subject (an exception object)
to the type of the catch clause (a subclass of ,��� ����) if the appropriate subclass
relationship holds.

Table 1. Type conversions during pattern matching. -�����, ������, and (������ are defined
in package ���������, while .��� and .�����
� are defined in package ���� #����
.

Subject Target type Constraints
��� → /��,	+� ��� ��
������� /��,	+�

��� → .��� ��� ��
������� .�����
� and ���������������%%)

��� → ������ ��� ��
������� .��� and �������.���0������1%����

��� → 2��
�����,	+� ��� is a boxed object assignment convertible to PrimitiveType
��� → 2��
�����,	+� ��� ��
������� ������ and T�+��
�T����� succeeds

+��
 → ������ (always succeeds, using the �������� method of the box type)
+��
 → 2��
�����,	+� +��
 assignment convertible to 2��
�����,	+�

Matchete augments Java’s type conversions and promotions [9, Chapter 5] with so-
called matching conversions, defined as a relation between values and types. Table 1
gives these conversion rules. For example, if the subject of a match is a reference with
static type -�����, say the string literal 34"3, it can be converted to a reference target
of type ������ provided that the dynamic ��
������� check succeeds. In some cases,
the conversion may involve multiple steps to get from the subject to the target. For ex-
ample, .�����
� → .��� → ������ → ��� starts from the result of an XPath query,
and converts it to an ��� if all the constraints along the way are satisfied. In general,
Matchete attempts conversions in the order in which Table 1 enumerates them, and the
conversion succeeds if it reaches the target type.

3.3 Primitive Patterns

Matchete has three kinds of primitive patterns which can be used at the leaves of a
match clause.
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Wildcard Patterns ::= �

The wildcard pattern, written �, is a catch-all that always matches. Formally, every
occurence of the wildcard pattern is distinct and can match against any Java value.

Value Patterns ::= Expression
It is often convenient to check whether a subject has a particular value. In general, value
patterns match against arbitrary Java expressions. A value pattern match first checks
whether the type of the subject can be converted to the type of the expression. If so,
it checks for equality using %% (for primitive types or null) or �5���
�� (for reference
types). If both the conversion and the comparison succeed, the value pattern branches
to its successor, otherwise it fails.

Binder Patterns ::= Modifiers Type Identifier Dimensions?

Composite patterns extract parts of the subject and bind them to names, so that the hand-
ler statement can refer to them directly. This binding is performed by binder patterns.
For example, the 
��� function uses the binder pattern ��� 6 to bind the head of the list
to a new local variable 6 for the handler. In general, a binder pattern match succeeds if
the type of the subject can be converted to the type of the expression. Binder patterns
look like variable declarations, with modifiers (e.g., �����), a type, an identifier, and an
optional dimensions for array types. The binding is visible in all successors in the same
match clause.

3.4 Composite Patterns

A composite pattern is one that has nested sub-patterns, which may themselves be com-
posite or primitive. Each composite pattern, regardless of kind, first decides whether or
not to invoke the nested patterns, and if yes, supplies them with subjects. If the com-
posite pattern and everything nested inside of it succeed, it invokes its successor. For
example, the root node of Fig. 2 is a composite pattern. It first checks that its subject is
a non-empty list. If so, it extracts parts of the list, and supplies them as subjects to its
children. If all succeed, the handler runs.

Deconstructor Patterns ::= Identifier 
� PatternList 

Deconstructor patterns allow Matchete to match structured terms of user-defined data
types and thus program in a style reminiscent of functional programming. One notable
difference is that deconstructor patterns invoke user-defined methods that decouple data
extraction from the implementation of the data type, preserving encapsulation. A pattern
list is simply a comma-separated list of match patterns:

PatternList ::= MatchPattern
(
� MatchPattern

)∗ | Empty

Semantically, the deconstructor pattern first checks whether the subject has a decon-
structor method with the given identifier, for example, ���
 in Fig. 1. If yes, it calls

�������
����� (). The method either returns the subjects for nested patterns, or re-
ports a failure. If there was no failure and the number of subjects matches the length of
the PatternList, the deconstructor pattern branches to the first nested pattern. Matching
proceeds as usual following the rules from Section 3.1.
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1 class IntList {
2 private int head; private InList tail;
3 public IntList(int h, IntList t){ head = h; tail = t; }
4 public cons˜(int h, IntList t){ h = head; t = tail; }
5 }

Fig. 3. List declaration with deconstructor

Deconstructor methods have syntax and semantics that differ from normal Java meth-
ods. Syntactically, deconstructors are denoted by the presence of a tilde between their
name and their argument list. They have no declared return type.

Declaration ::+= ... | Deconstructor
Deconstructor ::= Modifiers Identifier 
 � ParameterList 
 ThrowsClause? Block

Semantically, the arguments of a deconstructor are out parameters which must be
assigned to in the body. The deconstructor can use a ����7 statement to exit early and
report failure. Fig. 3 is an example where class (����
� has two private fields, a con-
structor, and a deconstructor (Line 4). In this case, the deconstructor is the inverse of
the constructor, it assigns the fields into output parameters for use as subjects in nested
matches. The current version of Matchete has no notion of exhaustive matches or un-
reachable clauses. Considering that deconstructors are user-defined this seems difficult.

Array Patterns ::= ArrayType � PatternList �
Array patterns are a special case of deconstructor patterns for Java arrays. For example,
the pattern ���!${)� 6� ��� 	} matches an array of three elements if the first element
is 1 and the second element has the same value as variable 6, and binds the third element
to a fresh variable 	. The syntax of array patterns resembles that of array constructors.
In general, an array pattern first checks whether the subject is an array of the appropriate
length, then invokes nested patterns on extracted elements. Matching proceeds as usual
following the rules from Section 3.1.

Regular Expression Patterns ::= � RegExpLiteral � � PatternList 

Perl excels at extracting data from plain text. This can be attributed to the tight integra-
tion of regular expression pattern matching in the syntax. Regular expressions are a fun-
damental concept from language theory that has phenomenal practical success, because
they concisely describe string matches that can be implemented efficiently. For instance,
consider the regular expression pattern ��������
���������
� � � ��� ����
.
The slashes delimit a regular expression that matches a sequence of digits followed
by a decimal point followed by more digits. Parentheses, � . . . �, inside the regular ex-
pression capture groups of characters to extract. The parentheses on the right contain a
list of nested patterns, which operate on the groups captured by the regular expression
on the left. On success, this pattern binds ���� to the digits after the decimal1 point.

Regular expression patterns first convert the subject to a string, then match it as spec-
ified by the ��������������6 package. If this succeeds and produces the correct num-
ber of results, the pattern invokes its nested patterns, providing the results as subjects.
Matching proceeds as usual following the rules from Section 3.1.
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XPath Patterns ::= � XPathLiteral  � PatternList 

XML is a widely-used data interchange format, and XPath is a pattern matching mech-
anism on the tree representation of an XML document. XPath is widely used because
it facilitates common data manipulation tasks through a simple tree query language.
An XPath query specifies a path in the tree of XML nodes in a fashion similar to how
file name paths in most operating systems specify paths in the tree of directories. The
subject of the match is a node, and the result is a set of nodes. Matchete supports XPath
patterns. For example, ����������+�	8�������  �.�����
� ����
� extracts the set of
all ������� grandchildren that are children of ���������+�	 children of the subject.

A Matchete XPath pattern converts the subject to a .��� or (�+��������, then queries
it as specified by the !�"�#�#�$�#%��& package. If this throws any exception, it
catches that exception and the match fails, otherwise, it supplies the resulting .�����
�

as the subject to nested patterns. Matching proceeds as usual following the rules from
Section 3.1.

Bit-Level Patterns ::= ��
(
� | ' | � MatchPattern � Expression 


)∗
��

When communicating with low-level network and hardware interfaces, programs need
to manipulate data at the level of raw bits. Writing code that does that by hand with
shifts and masks is time-consuming and error-prone. However, this problem resembles
other typical pattern tasks, in that it requires branching (depending on tag bits) and
binding (extracting sequences of payload bits and storing them in variables). Matchete
supports matching at the bit-level using patterns such as

[[ (0xdeadbeef : 32) 10 (byte x: 6) (int y: x) (int z: 24 - x) ]]

This example extracts the first 32 bits, converts them to an integer, and matches them
against the the nested integer value pattern 96��������. On success, it matches literal
bits ' and �, then a group of 6 bits, which it binds using the nested binder pattern
�	�� 6. Next, it extracts a group of # bits into (, and a group of 24 − # bits into ).

Bit-level patterns consist of two kinds of sub-patterns: literal � or ' for matching
individual bits, and groups in parentheses for matching subsequences of bits. Each
group has the syntax � MatchPattern � Expression �, where the expression specifies a
bit width, the number of bits to use as the subject of the nested pattern. The width ex-
pression can be any Java expression producing an ���, including literals, variables, or
arithmetic expressions. The subject for the nested pattern is the group of bits converted
to the smallest primitive type that will hold it.

Besides patterns for bit-level deconstruction, Matchete also has expressions for bit-
level construction, whose syntax is similar:

PrimaryExpression ::+= ... | BitLevelExpression
BitLevelExpression ::= ��

(
� | ' | � Expression � Expression 


)∗
��

Parameterized Patterns ::= Identifier � Expression 
 
 � PatternList 

Parameterized patterns are Matchete’s extension mechanism: they allow users to im-
plement new kinds of patterns for use in match statements. For example, the following
code uses a parameterized pattern where the parameter is a regular expression string,
instead of using the built-in RegExp syntax:
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1 matchete.Extractor re = myLibrary.RegExp();

2 match(subject) {
3 re("([a-zA-Z]+)�([0-9]+)")˜(name, int age): handler(age);
4 }

Line 1 creates an extractor and stores it in variable ��. Matchete implements Line 3 by
first making the call

����6������
������� 3�!�:��:;$<�=�!9:>$<�3�

That call returns an extraction (a tuple of subjects), and Matchete matches the extraction
against the nested patterns (in this case, the value pattern ��
� and the binder pattern
��� ���). If all succeeds, Matchete executes the handler.

To support an additional pattern matching mechanism in Matchete, the user needs to
implement two matchete library interfaces:

interface Extractor{ Extraction extract(Object subject, Object pattern); }
interface Extraction{ int size(); Object get(int i); }

In the earlier example, 
	������	�/��?6+ was a class that implements the Extractor in-
terface, and 3�!�:��:;$<� �!9:>$<�3 was passed in as the +������ parameter. In gen-
eral, the pattern parameter can be anything, such as an SQL query, a fileglob, a boolean
predicate, or a scanf format. A parameterized pattern in a match statement leads to an
extractor call, which returns an extraction, and Matchete matches the extraction against
nested patterns. Matching proceeds as usual following the rules from Section 3.1.

3.5 Deconstructors, Extractors, and Parameterized Patterns

Matchete’s deconstructor patterns and parameterized patterns are similar in that both
invoke a user-defined pattern matching method. For deconstructors, that method is an
instance method of the subject. For parameterized patterns, that method is a method of
a separate extractor object. Deconstructors are part of the design of a data type, whereas
parameterized patterns serve to wrap a pattern matching library that operates on existing
types such as strings.

Other languages supported user-defined pattern matching methods before Matchete.
The Scala language supports extractors, which are objects with a user-defined ���++�	

method [5]. For example, if the name ���
 refers to an extractor object, then the pattern
���
����� calls ���
����++�	�
������� and uses the return values in nested patterns.
The F# language supports active patterns, which are first-class functions [26]. They
work similarly to Scala extractors, but furthermore, can take additional input parame-
ters, similar to parameterized patterns in Matchete.

Matchete gives a slightly different design point than Scala and F#. It relies less on
functional language features, and integrates with more other flavors of pattern matching.

3.6 Summary

Table 2 summarizes Matchete’s syntax. The additions are limited to a new kind of state-
ment (MatchStatement), one new kind of declaration (Deconstructor), and one new kind
of expression (BitLevelExpression). The syntax and semantics of these are described
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Table 2. Matchete syntax. Literals are set in monospace fonts, non-terminals in italics. The syntax
for RegExpLiteral and XPathLiteral is checked by ��������������6 and ����6�6
��6+���.

Nonterminal Parsing Expression
Statement ::+= ... | MatchStatement
Declaration ::+= ... | Deconstructor
PrimaryExpression ::+= ... | BitLevelExpression
MatchStatement ::= 
���� � Expression � @ MatchClause* A

MatchClause ::= MatchPattern � Statement
MatchPattern ::= WildcardPattern | BitLevelPattern | ArrayPattern

| BinderPattern | DeconstructorPattern | ParameterizedPattern
| RegExpPattern | XPathPattern | ValuePattern

ArrayPattern ::= ArrayType @ PatternList A
BinderPattern ::= Modifiers Type Identifier Dimensions?

BitLevelExpression ::= !!
(
9 | ) | � Expression � Expression �

)∗
$$

BitLevelPattern ::= !!
(
9 | ) | � MatchPattern � Expression �

)∗
$$

DeconstructorPattern ::= Identifier ' � PatternList �
Deconstructor ::= Modifiers Identifier ' � ParameterList � ThrowsClause? Block
ParameterizedPattern ::= Identifier � Expression � ' � PatternList �
PatternList ::= MatchPattern

(
� MatchPattern

)∗ | Empty
RegExpPattern ::= 8 RegExpLiteral 8 � PatternList �
ValuePattern ::= Expression
WildcardPattern ::= B

XPathPattern ::= C XPathLiteral D � PatternList �

earlier in this section. Composite patterns are those where MatchPattern occurs in the
right hand side of the grammar rule. By using the general MatchPattern non-terminal
instead of any specific kind of pattern, all formalisms are pluggable into each other at
the syntactic level. Pluggability at the semantic level is accomplished by the evaluation
order rules from Section 3.1 and the type conversion rules from Section 3.2.

4 Examples

Red–black trees. Fig. 4 shows part of a Matchete implementation of red–black trees
[13,24]. The *�$���� method uses the +
 deconstructor to disassemble a node into
its components, and then reassembles black interior nodes so that the data structure
invariant is maintained: each red node must have two black children.

TCP/IP packet headers. Fig. 5 shows bit-level patterns used to recognize TCP/IP
packets. The packet header contains the length of the header itself in 32-bit words
(Line 5), and the length of the entire packet in bytes (Line 7). The header consists of a
fixed 5-word (20-byte) section and an optional variable-length �%����	 field (Line 18).
The �%����	 length is computed by subtracting the fixed 5-word length from the header
length field. If the header length is less than 5 words, the packet is malformed and the
pattern match will fail. Similarly, the length of the packet payload (Line 19) is a func-
tion of the extracted length and header length.
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1 class Node {
2 static final int R = 0, B = 1;
3
4 int color;
5 Node left, right;

6 int value;
7
8 Node(int c, Node l, int v, Node r) {
9 color = c; left = l; value = v; right = r;

10 }

11
12 T˜(int c, Node l, int v, Node r) {
13 c = color; l = left; v = value; r = right;

14 }

15
16 Node balance() {

17 match (this) {
18 T˜(B,T˜(R,T˜(R,Node a,int x,Node b),int y,Node c),int z,Node d):
19 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
20 T˜(B,T˜(R,Node a,int x,T˜(R,Node b,int y,Node c)),int z,Node d):
21 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
22 T˜(B,Node a,int x,T˜(R,T˜(R,Node b,int y,Node c)),int z,Node d):
23 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
24 T˜(B,Node a,int x,T˜(R,Node b,int y,T˜(R,Node c,int z,Node d))):
25 return new Node(R, new Node(B,a,x,b), y, new Node(B,c,z,d));
26 }

27 return this;
28 }

29 }

Fig. 4. Red–black tree balancing

5 The Matchete Compiler

We implemented a compiler that translates Matchete source code into Java source code.
The result can then be compiled with a regular Java compiler to Java bytecode, and
executed on a Java virtual machine together with the Matchete runtime library.

5.1 Background: Rats! and xtc

The Matchete parser is generated by Rats!, a packrat parser generator [11]. Rats! has
a module system for grammars, which permits Matchete to reuse and extend the Java
grammar without copy-and-paste. Instead, the Matchete grammar simply includes the
Java grammar as a module, changes it with rule modifications, and adds new rules
only for new language features. As Rats! is scannerless (i.e., it does not separate lexing
from parsing), Matchete needs to recognize new tokens only in match clauses without
perturbing the Java syntax.
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1 class IPDumper {
2 void dumpPacket(byte[] b) {
3 match (b) {
4 [[ (4: 4) /* version 4 */

5 (byte headerLength: 4)
6 (int TOS: 8)
7 (int length: 16)
8 (int identification: 16)
9 (byte evil: 1)

10 (byte doNotFragment: 1)
11 (byte moreFragmentsFollow: 1)
12 (int fragmentOffset: 13)
13 (int ttl: 8)
14 (int protocol: 8)
15 (int headerChecksum: 16)
16 (byte[] srcAddr: 32)
17 (byte[] dstAddr: 32)
18 (byte[] options: ((headerLength-5)*32))
19 (byte[] payload: (length-headerLength*4)*8) ]]: {
20 System.out.println("Source�address:�" + dotted(srcAddr));

21 System.out.println("Destination�address:�" + dotted(dstAddr));

22 }

23 _: System.out.println("bad�header");

24 }

25 }

26 String dotted(byte[] a) {
27 return a[0] + "." + a[1] + "." + a[2] + "." + a[3];
28 }

29 }

Fig. 5. TCP/IP packet header parsing

Matchete uses libraries from the xtc eXTensible C toolkit [10], which includes se-
mantic analyzers for Java and C. Analyzers are visitors that traverse abstract syntax
trees with dynamic dispatch, which permits the Matchete compiler to reuse and ex-
tend the Java analyzer without copy-and-paste. Instead, the Matchete semantic analyzer
is simply a subclass of the Java analyzer, and defines additional ��
�� methods for
the new grammar productions. xtc also includes support for synchronized traversal of
symbol tables. This permits Matchete to populate the symbol table during semantic
analysis, then automatically push and pop the same scopes for the same nodes dur-
ing code generation. One feature of xtc that was particularly helpful in writing the
Matchete compiler is the support for concrete syntax, which generates abstract syn-
tax tree snippets from parameterized stencils. This facilitated generation of the boiler-
plate code required to use, for example, the ��������������6+ and ����6�6
��6+���

APIs.
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5.2 Type Checking

The Matchete compiler statically checks the semantic rules of Java as specified in the
Java Language Specification [9]. This includes checking Java code nested inside of new
Matchete constructs, such as value patterns, handler statements, deconstructor bodies,
and width expressions of bit-level patterns. Type checking of regular Java code is facil-
itated by Matchete’s language design. For example, binder patterns declare the type of
the bound variable, which gets used for type-checking the handler statement.

5.3 Translation

The Matchete compiler is a prototype that demonstrates the existence of a straightfor-
ward translation from Matchete to Java. It performs no optimizations, we leave that to
future work.

1 static int mult(IntList ls) {
2 boolean matchIsDone=false;
3 if (matchete.Runtime.hasDeconstructor(ls , "cons")) {
4 final Object[] subject1= matchete.Runtime.deconstruct(ls, "cons");
5 if (null!=subject1 && 2==subject1.length) {
6 final Object subject2=subject1[0];
7 if (matchete.Runtime.convertible(subject2, Integer.TYPE)
8 && 0==matchete.Runtime.toInt(subject2)) {

9 matchIsDone=true;
10 return 0;
11 }

12 }

13 }

14 if (!matchIsDone && matchete.Runtime.hasDeconstructor(ls, "cons")) {
15 final Object[] subject3=matchete.Runtime.deconstruct(ls, "cons");
16 if (null!=subject3 && 2==subject3.length) {
17 final Object subject4=subject3[0];
18 if (matchete.Runtime.convertible(subject4, Integer.TYPE )) {
19 int h=matchete.Runtime.toInt(subject4);
20 final Object subject5=subject3[1];
21 if (null==subject5 || subject5 instanceof IntList) {
22 IntList t=(IntList) subject5;

23 matchIsDone=true;
24 return h * mult(t);
25 }

26 }

27 }

28 }

29 return 1;
30 }

Fig. 6. Code generated for example from Fig. 1
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After parsing and type checking, the Matchete compiler has a Matchete abstract
syntax tree (AST) with type annotations and a symbol table. Next, it transforms this
AST into a Java AST. Finally, it turns the Java AST into Java source code. The resulting
Java code calls the 
��������/����
� library for services implementing common tasks,
in particular, dynamic type conversions. As illustrated in Fig. 2, a match consists of a
sequence of patterns, each one determining whether its successor runs. The successor
order follows a preorder depth-first traversal of the AST. During code generation, each
pattern AST node turns into an if-statement around the code generated for its successor.
To generate this structure, the code generator simply traverses patterns in reverse order,
plugging each pattern into its predecessor as it creates them.

Fig. 6 shows the code generated for the Matchete code in Fig. 1. The outermost if-
statements (Lines 3–13 and 14–28) correspond to the match clauses in Lines 3 and
4 of Fig. 1. They communicate with each other using a synthesized boolean variable

����(
E���. This code illustrates the translation of deconstructor patterns (Lines 3–
5 and 15–17), value patterns (Lines 7–8), the wildcard pattern (no �� clause required,
cf. Fig. 1), and binder patterns (Lines 18–19 and 21–22). The result of deconstructor pat-
terns get used by multiple children, not just the immediate successor (Lines 17 and 20).
Deconstructor patterns are currently implemented with reflection, but we intend to use
static types to invoke deconstructors directly. The scope of bindings from binder pat-
terns extends over all their successors. For example, variable � declared on Line 19 is
in scope for the handler in Line 24. Note that code generation for value and binder pat-
terns requires type analysis: for example, Line 7 checks whether subject2 is convertible
to the type of a value expression. In this case, the value is 0, so the type is obviously ���.
But in general, value patterns can contain arbitrary Java expressions, including calls and
arithmetic, so finding their type requires a type checking phase in the compiler.

A deconstructor %
�+1 #1, . . . , +n #n
 translates to a method + with no formal pa-
rameters. The deconstructor parameters are translated to local variables of the generated
method, and the bindings in the deconstructor body are translated to assignments to
these variables. The method returns an -����� array initialized with the deconstructor
parameters. A ����7 statement compiles to ������ ����7.

As another example of how the compiler translates composite patterns, consider this
XPath pattern for bibliography data: �����,�&�����#��
 ���-�.�	� �,�&��	
.
Fig. 7 shows the Java code that the Matchete compiler generates for this pattern. It

1 XPath evaluator = XPathFactory.newInstance().newXPath();

2 try {
3 final Object nodeList = (NodeList) evaluator.evaluate(
4 ".//author/text()",(Node)subject, XPathConstants.NODESET);

5 if (null == nodeList || nodeList instanceof NodeList) {
6 NodeList authors = (NodeList) nodeList;

7 /* successor code */

8 }

9 } catch (XPathExpressionException e) { /* do nothing */ }

Fig. 7. Code generated for an XML query
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delegates the actual evaluation of the XPath expression to standard Java libraries. Un-
like other pattern types, XPath patterns detect match failure by catching an exception.
The exception prevents successor patterns from executing, and the empty ����� block
allows control to reach the next match clause, or the end of the match statement if this
pattern was in the last match clause.

6 Discussion

One tradeoff we faced when we designed Matchete was how tightly to integrate each
kind of pattern matching mechanism. Both regular expressions and XPaths are exam-
ples of loosely integrated pattern matching mechanisms. They are integrated, since they
can nest and be nested in patterns of other kinds. But they could be more tightly inte-
grated. For example, the regular expression 8�!9:>$<� ���!9:>$<�8 ���� 6� ��� 	�

specifies groups twice: once in the regular expression on the left, and then again in the
nested binder patterns on the right. A tight integration would combine the two, so that
programmers do not have to rely on counting and ordering to correlate them. The ad-
vantage of loose integration is that it does not alter the familiar syntax of the existing
matching mechanism, and it allows the implementation to reuse feature-rich optimized
libraries.

An example of tight integration is bit-level patterns in Matchete. A syntactic argu-
ment for tight integration is that when the different matching mechanisms resemble
each other, programmers can amortize their learning curve. On the other hand, tight
integration puts the full burden of the implementation on the host language vendor.

At the other end of the spectrum is no integration. For example, Matchete does not
directly support file name patterns as used in shells or makefiles. Matchete focuses on
covering the most important kinds of matches: on typed structured data (deconstructor),
on bit data (bit-level), on semistructured data (XPath), and on text (RegExp). But it
leaves out variations of these kind of matches, such as file name patterns. Instead, it
provides an extension mechanism (parameterized patterns).

Matchete has to strike a balance between static and dynamic typing. The arguments
for and against either are a subject of hot debate and beyond the scope of this paper.
But no language design can avoid decisions on this. Matchete’s decisions are summa-
rized in Section 3.2 and Table 1. Pattern matching in Matchete is mostly dynamically
typed. This felt natural, since patterns are often used to overcome a data representa-
tion mismatch. However, it reduces optimization opportunities, which is why Matchete
adds hints that can allow compilers to determine types statically in many cases. One
advantage of demonstrating pattern matching with little reliance on types is that it is
more applicable to dynamically typed host languages—Matchete features could easily
be transferred from Java to a scripting language. Note that Matchete pattern matches
are strongly typed: when they would violate types, patterns quietly fail instead.

The combination of dynamic typing and source-to-source translation raises concerns
about ease of debugging Matchete code. When a match statement does not work as
the programmer expected, they need to pinpoint the defect. Matchete uses functionality
provided with xtc to inject SMAPs [6] into class files, which allow Java debuggers such
as Eclipse or Jdb to work at the level of the original Matchete source code.
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7 Conclusions

This paper has introduced Matchete, an extension to the Java programming language
with a pattern matching construct that integrates data structure deconstruction, string
and bit-level manipulation, and XML queries. Our experience with Matchete suggests
that the ability to mix and match different kinds of pattern expressions is powerful and
leads to compact and elegant code. The prototype compiler is adequate as a proof of
concept, but we are actively working on optimizing the generated code.
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Abstract. Parser combinators are higher-order functions used to build
parsers as executable specifications of grammars. Some existing imple-
mentations are only able to handle limited ambiguity, some have expo-
nential time and/or space complexity for ambiguous input, most cannot
accommodate left-recursive grammars. This paper describes combina-
tors, implemented in Haskell, which overcome all of these limitations.
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1 Introduction

In functional programming, higher order functions called parser combinators can
be used to build basic parsers and to construct complex parsers for nonterminals
from other parsers. Parser combinators allow parsers to be defined in an embed-
ded style, in code which is similar in structure to the rules of the grammar. As
such, implementations can be thought of as executable specifications with all
of the associated advantages. In addition, parser combinators use a top-down
parsing strategy which facilitates modular piecewise construction and testing.

Parser combinators have been used extensively in the prototyping of compilers
and processors for domain-specific languages such as natural language interfaces
to databases, where complex and varied semantic actions are closely integrated
with syntactic processing. However, simple implementations have exponential
time complexity and inefficient representations of parse results for ambiguous
inputs. Their inability to handle left-recursion is a long-standing problem. These
shortcomings limit the use of parser combinators especially in applications with
large and complex grammars.

Various techniques have been developed by others to address some of these
shortcomings. However, none of that previous work has solved all of them.

The parser combinators that we present here are the first which can be used
to create executable specifications of ambiguous grammars with unconstrained
left-recursion, which execute in polynomial time, and which generate compact
polynomial-sized representations of the potentially exponential number of results
for highly ambiguous input.
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c© Springer-Verlag Berlin Heidelberg 2008



168 R.A. Frost, R. Hafiz, and P. Callaghan

The combinators are based on an algorithm developed by Frost, Hafiz and
Callaghan (2007). That algorithm combines memoization with existing tech-
niques for dealing with left recursion. The memotables are modified to represent
the potentially exponential number of parse trees in a compact polynomial sized
representation using a technique derived from (Kay 1980) and (Tomita 1986). A
novel technique is used to accommodate indirect as well as direct left recursion.

This paper has three objectives: 1) To make the algorithm of Frost, Hafiz and
Callaghan known to a wider audience beyond the Computational Linguistics
community. In particular by the functional and logic programming communities
both of which have a long history of creating parsers as executable specifica-
tions (using parser combinators and Definite Clause Grammars respectively),
2) to introduce a library of parser combinators for immediate use by functional
programmers, and 3) to illustrate how a declarative language facilitates the incre-
mental implementation of a complex algorithm. Note that extension to include
semantics will be straightforward, and that this work can be seen as an important
step towards combinators that support general attribute grammars.

As example use of our combinators, consider the following ambiguous gram-
mar from Tomita (1986). The nonterminal s stands for sentence, np for noun-
phrase, vp for verbphrase, det for determiner, pp for prepositional phrase, and
prep for preposition. This grammar is left recursive in the rules for s and np.

s ::= np vp | s pp np ::= noun | det noun | np pp
pp ::= prep np vp ::= verb np
det ::= "a" | "the" noun ::= "i" | "man" | "park" | "bat"
verb ::= "saw" prep ::= "in" | "with"

The Haskell code below defines a parser for the above grammar using our
combinators term, <+>, and *>.

data Label = S | ... | PREP
s = memoize S $ np *> vp <+> s *> pp
np = memoize NP $ noun <+> det *> noun <+> np *> pp
pp = memoize PP $ prep *> np
vp = memoize VP $ verb *> np
det = memoize DET $ term "a" <+> term "the"
noun = memoize NOUN $ term "i"<+>term "man"<+>term "park" <+> term "bat"
verb = memoize VERB $ term "saw"
prep = memoize PREP $ term "in" <+> term "with"

The next page shows the “prettyprinted” output when the parser function s
is applied to “i saw a man in the park with a bat”. The compact represen-
tation corresponds to the several ways in which the whole input can be parsed
as a sentence, and the many ways in which subsequences of it can be parsed
as nounphrases etc. For example, the entry for NP shows that nounphrases were
identified starting at positions 1, 3, 6, and 9. Some of which were identified as
spanning positions 3 to 5, 8, and 11. Two were found spanning positions 3 to 11.
The first of which consists of a NP spanning 3 to 5 followed by a PP spanning 5
to 11. (We define a span from x to y as consuming terminals from x to y - 1.)
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NOUN [1 ->[2 ->[Leaf "i"]]
,4 ->[5 ->[Leaf "man"]]
,7 ->[8 ->[Leaf "park"]]
,10->[11->[Leaf "bat"]]]

DET [3 ->[4 ->[Leaf "a"]]
,6 ->[7 ->[Leaf "the"]]
,9 ->[10->[Leaf "a"]]]

NP [1 ->[2 ->[SubNode NOUN (1,2)]]
,3 ->[5 ->[Branch [SubNode DET (3,4) , SubNode NOUN (4,5)]]

,8 ->[Branch [SubNode NP (3,5) , SubNode PP (5,8)]]
,11->[Branch [SubNode NP (3,5) , SubNode PP (5,11)]

,Branch [SubNode NP (3,8) , SubNode PP (8,11)]]]
,6 ->[8 ->[Branch [SubNode DET (6,7) , SubNode NOUN (7,8)]]

,11->[Branch [SubNode NP (6,8) , SubNode PP (8,11)]]]
,9 ->[11->[Branch [SubNode DET (9,10), SubNode NOUN (10,11)]]]]

PREP [5 ->[6 ->[Leaf "in"]]
,8 ->[9 ->[Leaf "with"]]]

PP [8 ->[11->[Branch [SubNode PREP (8,9), SubNode NP (9,11)]]]
,5 ->[8 ->[Branch [SubNode PREP (5,6), SubNode NP (6,8)]]

,11->[Branch [SubNode PREP (5,6), SubNode NP (6,11)]]]]
VERB [2 ->[3 ->[Leaf "saw"]]]
VP [2 ->[5 ->[Branch [SubNode VERB (2,3), SubNode NP (3,5)]]

,8 ->[Branch [SubNode VERB (2,3), SubNode NP (3,8)]]
,11->[Branch [SubNode VERB (2,3), SubNode NP (3,11)]]]]

S [1 ->[5 ->[Branch [SubNode NP (1,2), SubNode VP (2,5)]]
,8 ->[Branch [SubNode NP (1,2), SubNode VP (2,8)]

,Branch [SubNode S (1,5), SubNode PP (5,8)]]
,11->[Branch [SubNode NP (1,2), SubNode VP (2,11)]

,Branch [SubNode S (1,5), SubNode PP (5,11)]
,Branch [SubNode S (1,8), SubNode PP (8,11)]]]]

Parsers constructed with our combinators have O(n3) worst case time com-
plexity for non-left-recursive ambiguous grammars (where n is the length of the
input), and O(n4) for left recursive ambiguous grammars. This compares well
with O(n3) limits on standard algorithms for CFGs such as Earley-style parsers
(Earley 1970). The increase to n4 is due to expansion of the left recursive nonter-
minals in the grammar. Experimental evidence suggests that typical performance
is closer to O(n3), possibly because few subparsers are left recursive and hence
the O(n3) term predominates. Experimental evaluation involved four natural-
language grammars from (Tomita 1986), four variants of an abstract highly-
ambiguous grammar, and a medium-size natural-language grammar with 5,226
rules. The potentially-exponential number of parse trees for highly-ambiguous
input are represented in polynomial space as in Tomita’s algorithm.

We begin with background material followed by a detailed description of the
Haskell implementation. Experimental results, related work, and conclusions are
given in sections 4, 5 and 6. Formal proofs of termination and complexity, and
the code of the initial Haskell implementation, are available at:

cs.uwindsor.ca/~richard/PUBLICATIONS/APPENDICES_HASKELL.html
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2 Background

2.1 Top Down Parsing and Memoization

Top-down parsers search for parses using a top-down expansion of the gram-
mar rules. Tokens are consumed from left to right. Inclusive choice is used to
accommodate ambiguity by expanding all alternative right-hand-sides of gram-
mar rules. Simple implementations do not terminate for left-recursive grammars,
and have exponential time complexity with respect to the length of the input
for non-left-recursive ambiguous grammars.

The problem of exponential time complexity in top-down parsers constructed
as sets of mutually-recursive functions has been solved by Norvig (1991). His
technique is similar to the use of dynamic programming and state sets in Ear-
ley’s algorithm (1970), and tables in the CYK algorithm of Cocke, Younger and
Kasami. The key idea is to store results of applying a parser p at position j in
a memotable and to reuse results whenever the same situation arises. It can be
implemented as a wrapper function memoize which can be applied selectively to
component parsers.

2.2 The Need for Left Recursion

Left-recursion can be avoided by transforming the grammar to a weakly equiv-
alent non-left-recursive form (i.e. to a grammar which derives the same set of
sentences, but does not generate the same set of parse trees). Such transfor-
mation has two disadvantages: 1) it is error prone, especially for non-trivial
grammars, and 2) the loss of some parses (as illustrated in the example in (Frost
et al 2007)) complicates the integration of semantic actions, especially in NLP.

2.3 An Introduction to Parser Combinators

The details in this description have been adapted to our approach, and are
limited to recognition. We extend the technique to parsers later. Assume that
the input is a sequence of tokens input, of length #input the members of which
are accessed through an index j. Recognizers are functions which take an index
j as argument and which return a set of indices. Each index in the result set
corresponds to a position at which the parser successfully finished recognizing a
sequence of tokens that began at position j. An empty result set indicates that
the recognizer failed to recognize any sequence beginning at j. The result for an
ambiguous input is a set with more than one element. This use of indices instead
of the more conventional subsequence of input is a key detail of the approach:
we need the positions to index into the memotables.

A recognizer term ’x’ for a terminal ’x’ is a function which takes an index
j as input, and if j is less than #input and if the token at position j in the
input corresponds to the terminal ’x’, it returns a singleton set containing
j + 1, otherwise it returns the empty set. The empty recognizer is a function
which always succeeds returning a singleton set containing the current position.
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A recognizer for alternation p|q is built by combining recognizers for p and q,
using the combinator <+>. When the composite recognizer is applied to index j,
it applies p to j, applies q to j, and subsequently unites the resulting sets.

A composite recognizer corresponding to a sequence of recognizers p q on the
right hand side of a grammar rule, is built by combining those recognizers using
the parser combinator *>. When the composite recognizer is applied to an index
j, it first applies p to j, then it applies q to each index in the set of results
returned by p. It returns the union of these applications of q. The combinators
term, empty, <+> and *> are defined (in functional pseudo code) as follows:

term t j =

⎧⎪⎨
⎪⎩

{} , j ≥ #input

{j + 1} , jth element of input = t

{} , otherwise

empty j = {j}
(p <+> q) j = (p j) ∪ (q j)

(p *> q) j =
⋃

(map q (p j))

The combinators can be used to define composite mutually-recursive recog-
nizers. For example, the grammar s ::= ’x’ s s | empty can be encoded as
s = (term ’x’ *> s *> s) <+> empty. Assuming the input is “xxxx”, then:

(empty <+> term ’x’) 2 => {2,3}
(term ’x’ *> term ’x’) 1 => {3}

s 0 => {4, 3, 2, 1, 0}

The last four values in the result for s 0 correspond to proper prefixes of the
input being recognized as an s. The result 4 corresponds to the case where the
whole input is recognized as an s. Note that we have used sets in this explanation
to simplify later development of the combinators.

3 The Combinators

3.1 Preliminaries

The actual implementation of the combinators *> and <+> for plain recognizers
in Haskell is straightforward, and makes use of a library for Sets of Ints. An
excerpt is given below. In this fragment and the ones that follow, we make
some simplifications to ease presentation of the key details. Full working code is
available from the URL given in Section 1. We omit details of how we access the
input throughout this paper, treating it as a constant value.

type Pos = Int
type PosSet = IntSet
type R = Pos -> PosSet
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(<+>) :: R -> R -> R
p <+> q = \r -> union (p r) (q r)
(*>) :: R -> R -> R
p *> q = \r -> unions $ map q $ elems $ p r
parse :: R -> PosSet
parse p = p 0

In the following we develop the combinators *> and <+> incrementally, by
adding new features one at a time in each subsection. We begin with memo-
ization, then direct left recursion, then indirect left recursion, then parsing (to
trees). The revised definitions accompany new types which indicate a particular
version of the combinator. The modifications to <+> are omitted when they are
reasonably straightforward or trivial.

3.2 Memoizing Recognizers

We modify the combinators so that a memotable is used during recognition. At
first the table is empty. During the process it is updated with an entry for each
recognizer that is applied to a position. Recognizers to be memoized are labelled
with values of a type chosen by the programmer. These labels usually appear as
node labels in resulting parse trees, but more generality is possible, e.g. to hold
limited semantic information. We require only that these labels be enumerable,
i.e. have a unique mapping to and from Ints, a property that we use to make
table lookups more efficient by converting label occurrences internally to Ints
and using the optimized IntMap library.

The memotable is a map of memo label and start position to a result set. The
combinators are lifted to the monad level and the memotable is the state that is
threaded through the parser operations, and consulted and/or updated during
the memoize operation. We use a standard state monad:

type ILabel = Int
type RM memoLabel = Pos -> StateM (State memoLabel) PosSet
data StateM s t = State {unState:: s -> (t, s)}
type State nodeName = IntMap (IntMap PosSet)
(*>) :: RM l -> RM l -> RM l
p *> q = \r -> do end_p <- p r

end_qs <- mapM q (elems end_p)
return $ unions end_qs

The memoize function makes the decision regarding reuse of results. It is
implemented as a “wrapper” around other parsers, hence any sub-parser can be
memoized. The function checks whether an entry exists in the memotable for the
given parser label and position, returning the stored result if yes, otherwise it
runs the parser and stores the results before returning them. update_table adds
the new information to the table. Note that the update effect is to “overwrite”
the previous information. The insertWith...insert combination merges into the
outer table (insertWith) a new inner table that discards (insert) any previous
entry for that label and start position. This is necessary to update the stored
information as (left) recursion unwinds (see section 3.3):
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memoize :: Enum l => l -> RM l -> RM l
memoize e_name parser pos
= do mt <- get

case lookupT i_name pos mt of
Just res -> return res
Nothing -> do res <- parser pos

modify (update_table res)
return res

where
i_name = fromEnum e_name
update_table :: PosSet -> State l -> State l
update_table res = insertWith (\_ prev -> insert pos res prev)

i_name (singleton pos res)

3.3 Accommodating Direct Left Recursion

To accommodate direct left recursion, we use “left-rec counts” cij denoting the
number of times a recognizer ri has been applied to an index j. For non-left-
recursive recognizers cij will be at most one. For left-recursive recognizers, cij

is increased on recursive descent. Application of a recognizer ri to an index j is
curtailed whenever cij exceeds the number of unconsumed tokens of the input
plus 1. At this point no parse is possible (other than spurious parses from cyclic
grammars — which we want to curtail anyway.) As an illustration, consider
the following portion of the search space being created during the parse of two
remaining tokens on the input (where N, P and Q are nodes in the parse search
space corresponding to nonterminals. A, B and C are nodes corresponding to
terminals or nonterminals):

N
/ \

N A
/ \
N B
/ \

P C
/
Q
/

N

The last call of the parser for N should be curtailed owing to the fact that,
irrespective of what A, B, and C are, either they must require at least one input
token, or else they must rewrite to empty. If they all require a token, then the
parse cannot succeed. If any rewrite to empty, then the grammar is cyclic (N is
being rewritten to N). The last call should be curtailed in either case.

Curtailing a parse when a branch is longer than the length of the remaining
input is incorrect as this can occur in a correct parse if recognizers are rewrit-
ten into other recognizers which do not have “token requirements to the right”.
Also, we curtail the recognizer when the left-rec count exceeds the number of
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unconsumed tokens plus 1. The plus 1 is necessary for the case where the recog-
nizer rewrites to empty on application to the end of the input.

This curtailment test is implemented by passing a “left-rec context” down
the invocation tree. The context is a frequency table of calls to the memoized
parsers encountered on the current chain.

type L_Context = [(ILabel, Int)]
type LRM memolabel = L_Context -> RM memolabel

Only *> and memoize need to be altered beyond propagating the information
downwards. memoize checks before expanding a parser p to see if it has been
called more than there are tokens left in the input, and if so, returns an empty
result, otherwise continues as before though passing a context updated with an
extra call to p. The alteration to *> controls what context should be passed to
q: the current context should only be passed when p has consumed no tokens,
i.e. has done nothing to break the left-recursive chain.

(*>) :: LRM l -> LRM l -> LRM l
p *> q = \ctxt r -> do end_p <- p ctxt r

let pass_ctxt e | e == r = ctxt
| otherwise = []

end_qs<-mapM (\e-> q (pass_ctxt e) e)(elems end_p)
return $ unions end_qs

memoize :: Enum l => l -> LRM l -> LRM l
memoize e_name p ctxt pos
= do mt <- get

case lookupT i_name pos mt of
Just res -> return res
Nothing | depth_cutoff i_name ctxt >

(length_input - pos + 1) -> empty
| otherwise -> do

.. p (increment i_name ctxt) pos ..
where i_name = fromEnum e_name

depth_cutoff i e = case lookup i e of Nothing -> 0
Just fe -> fe

Notice what happens when unwinding the left-recursive calls. At each level,
memoize runs the parser and adds the results to the table for the given label
and start position. This table update, as mentioned earlier, overwrites previous
information at the start position, and therefore the table always contains the
“best results so far”. Note that the algorithm accommodates cyclic grammars.
It terminates for such grammars with information being stored in the memotable
which can be subsequently used to identify cycles.

3.4 Accommodating Indirect Left Recursion

We begin by illustrating how the method above may return incomplete results
for grammars containing indirect left recursion. Consider the following grammar,
and subset of the search space, where the left and right branches represent
the expansions of the first two alternate right-hand-sides of the rule for the
nonterminal S, applied to the same position on the input:
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S ::= S ..| Q | P | x S
P ::= S .. / + \
Q ::= T S .. Q
T ::= P | |

S .. T
| |
P P
| |
S .. S ..
|

curtail S

Suppose that the branch for the left alternative is expanded before the right
branch during the search, and that the left branch is curtailed due to the left-rec
count for S exceeding its limit. The results stored for P on recursive ascent of
the left branch is an empty set. The problem is that the later call of P on the
right branch should not reuse the empty set of results from the first call of P as
they are incomplete with respect to the position of P on the right branch (i.e. if
P were to be reapplied to the input in the context of the right branch, the results
would not necessarily be an empty set.) This problem is a result of the fact that,
on the left branch, S caused curtailment of the results for P as well as for itself.

Our solution to this problem is as follows: 1) Pass left-rec contexts downwards
as in subsection 3.3. 2) Generate the reasons for curtailment when computing
results. For each result we need to know if the subtrees contributing to it have
been curtailed through any left-rec limit, and if so, which recognizers caused
the curtailment. 3) Store results in the memotable together with a subset of
the current left-rec context corresponding to those recognizers that caused the
curtailment at the current position, and 4) Whenever a stored result is being
considered for reuse, the left-rec-context of that result is compared with the
left-rec-context of the current node in the parse space. The result is only reused
if, for each recognizer in the left-rec context of the result, the left-rec-count is
smaller than or equal to the left-rec-count in the current context. This ensures
that a result stored for application P of a recognizer at index j is only reused
by a subsequent application P’ of the same recognizer at the same position, if
the left-rec context for P’ would constrain the result more, or equally as much,
as it had been constrained by the left-rec context for P at j. If there were no
curtailment, the left-rec context of a result would be empty and that result can
be reused anywhere irrespective of the current left-rec context.

This strategy extends the recognizer return type to include a set of labels that
caused curtailments during that parse. Note that we only collect information
about curtailment for the current position, so only collect results from q in the
case where p consumed no input, i.e. where the endpoint of p is the same as the
starting position.

type CurtailingNTs = IntSet
type UpResult = (CurtailingNTs, PosSet)
type State nodeName = IntMap (IntMap (L_Context,UpResult))
type CLRM memoLabel = L_Context -> Pos



176 R.A. Frost, R. Hafiz, and P. Callaghan

-> StateM (State memoLabel) UpResult

(*>) :: CLRM l -> CLRM l -> CLRM l
p *> q = \ctxt r -> do (cut,end_p) <- p ctxt r

let pass_ctxt e | e == r = ctxt
| otherwise = []

merge_cuts e prev new
| e == r = union prev new
| otherwise = prev

join (prev_cut, prev_result) e
= do (new_cut, result) <- q (pass_ctxt e) e

return ( merge_cuts e prev_cut new_cut
, union prev_result result )

end_qs <- foldM join (cut, empty) end_p
return end_qs

The function <+> is modified to merge information from the subparsers:

(<+>) :: CLRM l -> CLRM l -> CLRM l
(p <+> q) inp cc = do (cut1,m) <- p inp cc

(cut2,n) <- q inp cc
return ( union cut1 cut2 , union m n )

When retrieving results, memoize compares the current context with the
pruned stored context. Reuse is only allowed if every label in the stored con-
text appears in the current context and is not less constrained in the current
context. Otherwise, the parser is run further in the current context to compute
the results that were curtailed (and hence missing) in the earlier call.

pruneContext :: CurtailingNTs -> L_Context -> L_Context
pruneContext rs ctxt = [nc | nc@(n,c) <- ctxt, n ‘member‘ rs]
canReuse :: L_Context -> L_Context -> Bool
canReuse current stored
= and [ or [ cc >= sc | (cn,cc) <- current, sn == cn ]

| (sn,sc) <- stored ]

3.5 Building Parse Trees

Turning a recogniser into a parser is straightforward. A set of endpoints now
becomes a map of endpoints to lists of trees that end at that point. The memo-
table type is altered to contain this new information: it stores tree results with
their curtail set and a relevant L context. The tree type is shown below.

data Tree l = Empty | Leaf Token | Branch [Tree l] | ...
type ParseResult memoLabel = [(Int, [Tree memoLabel])]
type UpResult memoLabel = (CurtailingNTs, ParseResult memoLabel)
data Stored memoLabel = Stored { s_stored :: UpResult memoLabel

, s_context :: L_Context
, s_results :: [(Int, Tree memoLabel)]}

type State memoLabel = IntMap (IntMap (Stored memoLabel))
type P memoLabel

= L_Context -> Pos -> StateM (State memoLabel) (UpResult memoLabel)
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term parsers now return a list of leaf values with suitable endpoints. The
empty parser returns an empty tree. Alternative parses from <+> are merged by
appending together the lists of trees ending at the same point. The maps are
held in ascending endpoint order to give this operation an O(n) cost.

Sequences require *> to join all results of p with all results of q, forming
new branch nodes in the tree, and merging the resulting maps together. The
former is achieved with addP which combines a particular result from p with all
subsequent results from q, and with addToBranchwhich merges lists of trees from
both the left and the right into a new list of trees. Notice that this operation
is a cross-product: it must pair each tree from the left with each tree on the
right. Tree merging or packing is done by concatenating results at the same
endpoint.

addP :: [[Tree l]] -> ParseResult l -> ParseResult l
addP left_result right_output
= [ (re , addToBranch left_result right_results)

| (re , right_results) <- right_output ]
addToBranch :: [[Tree l]] -> [[Tree l]] -> [[Tree l]]
addToBranch lts rts = [r ++ l | l <- lts, r <- rts]

The memoize function handles the rest of tree formation, both labelling and
introducing sharing to avoid an exponential number of trees. Labelling attaches
the memo label to the tree result. Sharing replaces the computed list of results
with a single result that contains sufficient information to find the original list
which will be stored in the memo table. This single result is then returned to
higher parsers as a ‘proxy’ for the original list. To avoid recomputation, we also
store the proxy in the memotable to be retrieved by subsequent parser lookups.
This technique avoids exponential blow-up of the number of results propagated
by parsers. An example of the resulting compact representation of parse trees
has been given in Section 1.

It is important to note that the combinators support addition of semantics.
The extension from trees to semantic values is straightforward via an “applicative
functor” interface, e.g. with operator (<*>) :: P (a -> b) -> P a -> P b. A
monadic interface may also be defined.

Test Set #Input #Parses Our method Tomita’s method
G1 G2 G3 G4 G1 G2 G3 G4

Tomita’s 19 346 0.02 4.79
sent. set 1 26 1,464 0.03 8.66

Tomita’s 22 429 0.02 0.02 0.03 0.03 2.80 6.40 4.74 19.93
sent. set 2 31 16,796 0.02 0.02 0.05 0.08 6.14 14.40 10.40 45.28

40 742,900 0.02 0.06 0.08 0.09 11.70 28.15 18.97 90.85

Fig. 1. Informal comparison with Tomita’s results (timings in seconds)
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4 Experimental Results

To provide evidence of low-order polynomial costs, we conducted a small scale
evaluation with respect to: a) Four practical natural-language grammars (Tomita
1986, Appendix F, pages 171 to 184); b) Four variants of an abstract highly
ambiguous grammar from Aho and Ullman (1972); and c) A medium size NL
grammar for an Air Travel Information System maintained by Carroll (2003).

Our Haskell program was compiled using the Glasgow Haskell Compiler 6.6.
We used a 3GHz/1Gb PC. The performance reported is the “MUT time” as
generated in GHC runtime statistics, which is an indication of the time spent
doing useful computation. It excludes time spent in garbage collection. We also
run with an initial heap of 100Mb and do not fix an upper limit to heap size
(apart from the machine’s capacity).

Note that the grammars we have tested are inherently expensive owing to the
dense ambiguity, and this is irrespective of which parsing method is used.

4.1 Tomita’ Grammars

The grammars used were: G1 (8 rules), G2 (40 rules), G3 (220 rules), and G4
(400 rules) (Tomita 1986). We used two sets of input: a) the two most-ambiguous
inputs from Tomita’s sentence set 1 (page 185 App. G) of lengths 19 and 26 which
we parsed with G3 (as did Tomita), and b) three inputs of lengths 4, 10, and
40, with systematically increasing ambiguity, from Tomita’s sentence set 2.

Figure 1 shows our times and those recorded by Tomita for his algorithm,
using a DEC-20 machine (Tomita 1986, pages 152 and 153 App. D). Clearly
there can be no direct comparison against years-old DEC-20 times. However,
we note that Tomita’s algorithm was regarded, in 1986, as being at least as
efficient as Earley’s and viable for natural-language parsing using machines that
were available at that time. The fact that our algorithm is significantly faster on
current PCs supports the claim of viability for NL parsing.

4.2 Highly Ambiguous Abstract Grammars

We defined parsers for four variants of a highly-ambiguous grammar introduced
by Aho and Ullman (1972): an unmemoized non-left–recursive parser s, a mem-
oized version ms, a memoized left–recursive version sml, and a memoized left–
recursive version with one sub-component also memoized smml:

s = term ’x’ *> s *> s <+> empty
sm = memoize SM $ term ’x’ *> sm *> sm <+> empty
sml = memoize SML $ sml *> sml *> term ’x’ <+> empty
smml = memoize SMML $ smml *> (memoize SMML’ $ smml *> term ’x’) <+>empty

We chose these four grammars as they are highly ambiguous. The results in
figure 2 show that our algorithm can accommodate massively ambiguous input
involving the generation of large and complex parse forests. ‘*’ denotes memory
overflow and ‘-’ denotes timings less than 0.005 seconds.
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Input Length No. of parses s sm sml smml

6 132 1.22 - - -
12 208,012 * - - 0.02
24 1.289e+12 0.08 0.13 0.06
48 1.313e+26 0.83 0.97 0.80

Fig. 2. Timings for highly-ambiguous grammars (time in seconds)

4.3 ATIS – A Medium Size NL Grammar

Here, we used a modified version of the ATIS grammar and test inputs generated
by Carroll (2003), who extracted them from the DARPA ATIS3 treebank.

Our modifications include adding 634 new rules and 66 new nonterminals in
order to encode the ATIS lexicon as CFG rules. The resulting grammar consists
of 5,226 rules with 258 nonterminals and 991 terminals. Carroll’s test input set
contains 98 natural language sentences of average length 11.4 words. An example
sentence is “i would like to leave on thursday morning may fifth before six a.m.”.

Times to parse ranged from <1 second for the 5 shortest inputs, to between
12 and 19 seconds for the 5 longest inputs. The average time was 1.88 seconds.
Given that our Haskell implementation is in an early stage of development,
these results suggest that it may be possible to use our algorithm in applications
involving large grammars.

5 Related Work

Our combinators implement the algorithm of Frost, Hafiz and Callaghan (2007).
The relationship of that algorithm to work by others on left recursion is dis-
cussed in detail in their paper. The following is a brief summary: As in Shiel
(1976), the algorithm passes information to parsers which is used in curtailment.
The information passed is similar to the cancellation sets used by Nederhof and
Koster (1993). The algorithm uses the memoization technique of Norvig (1991)
to achieve polynomial complexity with parser combinators, as do Frost (1994),
Johnson (1995), and Frost and Hafiz (2006). Note that Ford (2002) has also used
memoization in functional parsing, but for constrained grammars. Lickman ac-
commodates left-recursion using fixed points (1995), based on an unpublished
idea by Wadler, but he does not address the problem of exponential complex-
ity. Johnson (1995) integrates a technique for dealing with left recursion with
memoization. However, the algorithm on which we base our combinators differs
from Johnson’s O(n3) approach in the technique that we use to accommodate
left recursion. Also, the algorithm facilitates the construction of compact rep-
resentations of parse results whereas Johnson’s appears to be very difficult to
extend to do this. As in Frost and Hafiz (2006) the algorithm integrates “left-
recursion counts” with memoization, and defines recognizers as functions which
take an index as argument and which return a set of indices. The algorithm is an
improvement in that it can accommodate indirect as well as direct left recursion
and can be used to create parsers in addition to recognizers.
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Extensive research has been carried out on parser combinators. A compre-
hensive overview of that work can be found in (Frost 2006). Our approach owes
much to that work. In particular, our combinators and motivation for their use
follows from Burge (1975) and Fairburn (1986). Also, we use Wadler’s (1985) no-
tion of failure as an empty list of successes, and many of the ideas from Hutton
and Meijer (1995) on monadic parsing.

6 Concluding Comments

We have developed a set of parser combinators which allow modular and efficient
parsers to be constructed as executable specifications of ambiguous left-recursive
grammars. The accommodation of left recursion greatly increases what can be
done in this approach, and removes the need for non-expert users to painfully
rewrite and debug their grammars to avoid left recursion. We believe that such
advantages balance well against any reduction in performance, especially when
an application is being prototyped, and in those applications where the addi-
tional time required for parsing is not a major factor in the overall time required
when semantic processing, especially of ambiguous input, is taken into account.
Experimental results indicate that the combinators are feasible for use in small
to medium applications with moderately-sized grammars and inputs. The results
also suggest that with further tuning, they may be used with large grammars.

Future work includes proof of correctness, analysis w.r.t. grammar size, im-
provements for very large grammars, detailed comparison with other combina-
tors systems such as Parsec, reduction of reliance on monads in order to support
some form of “on-line” computation, comparison with functional implementa-
tions of GLR parsers, and extension of the approach to build modular executable
specifications of attribute grammars.
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Abstract. Packrat parsing is a newly popular technique for efficiently
implementing recursive descent parsers. Packrat parsing avoids the po-
tential exponential costs of recursive descent parsing with backtracking
by ensuring that each production rule in the grammar is tested at most
once against each position in the input stream. This paper argues that
(a) packrat parsers can be trivially implemented using a combination
of definite clause grammar rules and memoing, and that (b) packrat
parsing may actually be significantly less efficient than plain recursive
descent with backtracking, but (c) memoing the recognizers of just one or
two nonterminals, selected in accordance with Amdahl’s law, can some-
times yield speedups. We present experimental evidence to support these
claims.

Keywords: Mercury, parsing, packrat, recursive descent, DCG, memo-
ing, tabling.

1 Introduction

Recursive descent parsing has many attractions: (a) it is simple to understand
and implement; (b) all the features of the implementation language are avail-
able to the parser developer; (c) complex rules can be implemented easily (for
instance, longest match, or A not followed by B); (d) parsing rules may if neces-
sary depend on ‘state’ such as the current contents of the symbol table; and (e)
higher order rules may be used to abstract away common grammatical features
(e.g. comma-separated lists).

However, recursive descent parsing requires backtracking for grammars that
aren’t LL(1) and, in the worst case, that backtracking may lead to exponen-
tial complexity. Consider the grammar in figure 1. Assuming a top-down, left-
to-right, recursive descent strategy, matching the non-terminal “a” against the
input string “xxxzzz” involves testing all possible length six expansions of a
before succeeding.

Packrat parsing ensures linear complexity for such grammars by testing each
production rule at most once against each position in the input stream. This
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a ::= b | c
b ::= ‘x’ d ‘y’
c ::= ‘x’ d ‘z’
d ::= a | epsilon

Fig. 1. A grammar with pathological recursive descent behaviour: a, b, c, d are
non-terminals; ‘x’, ‘y’, ‘z’ are terminals; epsilon matches the empty string

is typically done by incrementally constructing a table mapping each (non-
terminal, input position) pair to unknown, failed, or a number n where parsing
succeeded consuming n input tokens. (In practice the ‘succeeded’ entries may
also contain other information, such as abstract syntax tree representations of
the matched input fragment.) Figure 2 gives an example of a packrat table being
filled out.

Input position
1 2 3 4 5 6

a 6−15− 4−11− 2−7− failed−3−
b failed−13− failed−9− failed−5− failed−1−
c 6−14− 4−10− 2−6− failed−2−
d 4−12− 2−8− 0−4−

Fig. 2. Filling out a packrat table matching non-terminal a from figure 1 against
“xxxzzz”. Blank entries denote unknown, ‘failed’ denotes a non-match, numbers
denote successful parsing consuming that number of input tokens, and –subscripts–
show the order in which entries were added.

Packrat parsing has recently been made popular by packages such as Pappy
(Bryan Ford’s Haskell package [2]) and Rats! (Robert Grimm’s Java package [3]).

There are two key problems with the packrat approach. First, the table can
consume prodigious amounts of memory (the Java parser generated by Pappy
requires up to 400 bytes of memory for every byte of input). Second, it cannot
easily be extended to handle contextual information, such as the current line
number. Another, perhaps less significant, problem is that the packrat table
cannot be used for nondeterministic grammars.

In this paper, we describe an alternative approach to packrat parsing that
can avoid these problems. First, section 2 shows that recursive descent parsers
can be constructed quite easily in Mercury [8] using Definite Clause Gram-
mars [6]. Section 3 goes on to show how Mercury DCG parsers can be trivially
converted into packrat parsers by memoing the recognition predicates of all the
nonterminals, and that being selective about what to memo has its advantages.
Section 4 gives some interesting performance results, comparing the Mercury
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approach with Robert Grimm’s Rats! packrat parser generator. Section 5 con-
cludes with a discussion of the relative merits of packrat parsers and plain DCG
parsers.

2 Definite Clause Grammars

Logic programming languages such as Prolog and Mercury have built-in support
for coding recursive descent parsers in the form of definite clause grammars
(DCGs). The Mercury syntax of a DCG rule is

H --> B.

where H is the head of the rule (the non-terminal) and B is its body. The syntax
for the body is

B ::= [x1, ..., xn]
| B1, B2
| ( if B1 then B2 else B3 )
| B1 ; B2
| { G }

Body terms match as follows: [x1, ..., xn] succeeds iff the next n items of
input unify with x1 to xn respectively (these items are consumed by the match);
B1, B2 matches B1 followed by B2; ( if B1 then B2 else B3 ) matches either
B1, B2, or just B3 in the case that B1 does not match at the current position;
B1 ; B2 matches either B1 or B2; { G } succeeds iff the ordinary Mercury goal
G succeeds. A body item not B is syntactic sugar for ( if B then { false }
else { true } ), where the goal true always succeeds and the goal false
always fails.

The compiler uses a simple source-to-source transformation to convert DCG
rules into ordinary Mercury. Every DCG rule becomes a predicate with two
extra arguments threaded through, corresponding respectively to the represen-
tation of the input remaining before and after matching. Figure 3 shows the
transformation algorithm.

By way of an example, the following DCG rule nat matches natural numbers
(as in Prolog, Mercury variable names start with an upper case letter, while
predicate names and function symbols start with a lower case letter):

nat --> digit, digits.
digit --> [X], { char.is_digit(X) }.
digits --> ( if digit then digits else { true } ).

char.is_digit is a predicate in the Mercury standard library; it succeeds iff its
argument is a character between ’0’ and ’9’. Note that the last rule implements
longest match.
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Transform H --> B into H(S0, S) :- <<B, S0, S>> where

<<[x1, ..., xn], S0, S>> = S0 = [x1, ..., xn | S]
<<(C1, C2), S0, S>> = some [S1] (<<C1, S0, S1>>,

<<C2, S1, S >>)
<<( if C then T = some [S1] ( if <<C, S0, S1>>

else E ), S0, S>> then <<T, S1, S >>
else <<E, S0, S >> )

<<(D1 ; D2), S0, S>> = (<<D1, S0, S>> ; <<D2, S0, S>>)
<<{ G } S0, S>> = G, S = S0

Fig. 3. Transforming DCG rules into plain Mercury. S0, S1, S are input stream
states.

DCGs are very flexible: rules can take arguments and compute results. The
following version of nat returns the number matched as an integer:

nat(N) --> digit(D), digits(D, N).
digit(D) --> [X], { char.digit_to_int(X, D) }.
digits(M, N) -->

( if digit(D) then digits(10 * M + D, N) else { N = M } ).

Here, digits takes M (the numeric value of the digits read so far) as a parameter
and computes N (the numeric value of the entire digit sequence matched by the
nonterminal) as the result. char.digit_to_int(X, D) succeeds iff X is a digit,
unifying D with its integer value.

Negation can allow for elegant disambiguation between rules:

integer(S, I) --> sign(S), nat(I), not frac_part(_F).
real(S, I, F) --> sign(S), nat(I), frac_part(F).
frac_part(F) --> [’.’], digit(D), frac(100.0, float(D)/10.0, F).

frac(M, F0, F) --> ( if digit(D)
then frac(M * 10.0, F0 + float(D) / M, F)
else { F = F0 } ).

sign(S) --> ( if [’-’] then { S = -1 } else { S = 1 } ).

The pattern not frac_part(_F) succeeds iff frac_part(_F) fails, hence the
integer rule only matches natural numbers that are not followed by a fractional
part. Without this negated pattern, integer would match the initial part of the
lexeme of every real number.

Higher order DCG rules can be used to abstract out common grammatical
patterns, such as these:

optional(P, X) -->
( if P(Y) then
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{ X = yes(Y) }
else

{ X = no }
).

zero_or_more(P, List) -->
( if P(Head) then

zero_or_more(P, Tail),
{ List = [Head | Tail] }.

else
{ List = [] }

).

one_or_more(P, [Head | Tail]) -->
P(Head),
zero_or_more(P, Tail).

comma_separated_list(P, [Head | Tail]) -->
P(Head),
zero_or_more(comma_followed_by(P), Tail).

comma_followed_by(P, X) -->
[’,’],
P(X).

(In each of these cases P must be a DCG rule computing a single result.)
Using these higher order rules is quite simple. For example, one can

match a comma-separated list of natural numbers just by calling by calling
comma_separated_list(nat, Nats).

3 Using Memoing to Create Packrat Parsers

The Mercury compiler provides extensive support for several forms of tabled
evaluation. Memoing is one of these forms. When a memoized predicate is called,
it looks up its call table to see whether it has been called with these arguments
before. If not, it enters the input arguments in the call table, executes as usual,
and then records the output arguments of each answer. On the other hand, if
the predicate has been called with these input arguments before, it returns the
answers from the call’s answer table directly, without executing the predicate’s
code.

To memoize a Mercury predicate or function one need only add the appropri-
ate pragma. For example:

:- pragma memo(nat/3, <attributes>).
:- pragma memo(integer/4, <attributes>).
:- pragma memo(real/5, <attributes>).
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The first argument of the memo pragma is the name/arity pair identifying the
predicate to be memoized. For DCG rules the arity component is that of the
Mercury predicate resulting from the DCG transformation of figure 3, which
adds two extra arguments to the DCG rule.

The second argument to the memo pragma is a list of attributes controlling
the memoization transformation. Valid attributes are:

– allow_reset tells the compiler to generate a predicate that the user can call
to clear the predicate’s memo table.

– statistics tells the compiler to keep statistics about all the accesses to the
predicate’s memo table, and to generate a predicate that user code can call
to retrieve these statistics.

– specified([...]) tells the compiler how to construct the call table. The
list should contain one element for each predicate argument. If the argument
is an input argument, this element can be value, addr or promise_implied.

• value tells the compiler to table the full value of the argument. If the
term bound to this argument at runtime contains n function symbols,
this will take O(n) time and can create O(n) new nodes in the call tree,
so it can be slow.

• addr tells the compiler to table only the address of the argument, which
uses only constant time and space. The downside is that while equal
addresses imply equal values, nonequal addresses do not imply unequal
values. Therefore if any arguments are tabled by address, two calls in
which the values of all input arguments are equal may nevertheless not
be recognized as being the same call, leading to the unnecessary recom-
putation of some previously stored answers.

• promise_implied asserts that the corresponding argument need not be
stored or looked up in the call table, because the user promises its value
to be a function of the values of the other input arguments.

If the argument is an output argument, the corresponding element should
be output.

– fast_loose tells the compiler to table all input arguments by address; it is
equivalent to a longer specified([...]) annotation.

For parsing applications, asking for all input arguments to be tabled by address
is almost always optimal.

Memoizing all the rules in a DCG parser essentially converts a recursive de-
scent parser into a packrat parser. The memoized predicates generated by the
Mercury compiler employ hash tables with separate chaining. Tables start small,
but are automatically expanded when their load factors exceed a threshold. They
therefore have O(1) expected lookup times, the same order as packrat tables.
Since hash tables are more complex than mere 2D arrays, their constant factor
is higher, but in practice, the hash table approach may well be superior. This
is because packrat tables will nearly always be sparsely populated, so the hash
tables probably occupy less memory and are therefore likely to be more memory-
system friendly — one would expect significantly less paging when parsing any
sizeable amount of input. Of course, the packrat table can be compressed, as
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in [4], but that erodes, eliminates, or even reverses the constant factor advan-
tage. Furthermore, it is a specialized optimization; with memoed DCGs, any
optimization of the memo tables is of general use. The more general memoing
mechanism has two further advantages: it works for parsing nondeterministic
grammars, and, more importantly, it supports parameterized parsing rules, such
as comma_separated_list.

4 Performance Evaluation

To see how memoized DCG parsers perform compared to packrat parsers, we
need both kinds of parsers for the same language, preferably a language with
lots of programs available as test data. We implemented a parser for the Java
language to allow comparison with results published for other packrat parsers
(e.g. [2], [3]).

4.1 Parser Structure

Our implementation is an almost direct transliteration of the grammar pro-
vided in Sun’s Java Language Specification (Second Edition) which can be found
on-line at http://java.sun.com/docs/books/jls/second_edition/html/
syntax.doc .html. (Section 3 of that document specifies the lexical structure
of identifiers, primitive literals and so on). We did the translation into Mercury
done by hand (although doing so automatically would not have been hard were
it not for the occasional error in Sun’s published grammar, such as the handling
of instanceof expressions). We did not take advantage of any opportunities for
optimization.

We implemented a rule from Sun’s grammar such as

BlockStatement ::= LocalVariableDeclarationStatement
| ClassOrInterfaceDeclaration
| [Identifier :] Statement

as the Mercury DCG predicate

block_statement -->
( if local_variable_declaration_statement then

[]
else if class_or_interface_declaration then

[]
else

optional(label), statement
).

label -->
identifier,
punct(":").
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[] is the DCG equivalent of a no-op goal and the grammatical convenience
[Identifier :] is replaced with a higher order call to one of the predicates
we showed in section 2. The higher order argument of that call representing the
identifier-colon pattern could have been an anonymous lambda-expression, but
making it a separate named predicate (label) is more readable.

The reason why the predicate is only a recognizer (i.e. it doesn’t return any-
thing useful like a parse tree) is to remove any differences in the parse tree
construction process as a source of unwanted variability in our comparison with
the Rats! packrat parser generator. Since Rats! views nonterminals as being de-
fined by an ordered list of productions, which stops looking for parses using
later productions after finding a parse using an earlier production, this code also
replaces the apparent nondeterminism of the original grammar with a determin-
istic if-then-else chain. In the absence of code to build parse trees, the identity of
the production that matches a nonterminal like block_statement doesn’t mat-
ter anyway. Adapting the implementation to also construct an abstract syntax
tree would simply require an extra parameter in each DCG predicate’s argument
list, together with some simple code in each production to compute its value. In
fact, the definition of optional in section 2 assumes that we are building parse
trees; if we are not, we need to use this simplified definition instead:

optional(P) -->
( if P then [] else [] ).

4.2 Experimental Setup

Our test load consisted of the 735 largest Java source files taken from a randomly
chosen large Java program, the Batik SVG toolkit. (More source files would have
exceeded the 20 Kbyte limit on the length of command line argument vectors.)
The input files range in size from a few hundred lines to more than 10,000 lines;
they total more than 900,000 lines and 9.6 Mbytes.

To evaluate packrat parsing, we used the xtc Java parser generated with the
Rats! optimizing packrat parser generator (version 1.12.0, released on 18 July
2007). We took the grammar specification from the Rats! web site, so it should
match the version used in Grimm’s paper [4]. We ran the generated parser both
with and without the Java optimization option (-Xms20m) recommended by
Grimm, which starts the system with a 20 Mb memory allocation pool. The
startup times were nontrivial either way, so figure 4 reports not just the time
taken by each version to parse the test load, but also the time taken by each
version on the null load (a single empty file), and the difference between them.
The figures represent user time in seconds; they were obtained by averaging the
times from 22 runs.

We also tried to test a packrat parser generated by Pappy, but we could not
get it to work.

To evaluate DCG parsing and memoing, we wrote a script that could take a
template Java parser written in Mercury and create several hundred different
versions of it. These versions varied along the following dimensions.
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Input representation. There are several possible ways to represent the input
and the current position of the parser in it. We tested five of these.
chars: the state is a list of the characters remaining in the input.
single: the state is a triple: a string giving the entire contents of the input

file, the length of that string, and the current offset.
global: the state is just an integer, the current offset. The input string

and its length are stored in global variables, and accessed using impure
foreign language code.

pass1: the state is just an integer, the current offset, but the input string
and its length are passed around to every recognition predicate as a pair
in one extra input argument.

pass2: the state is just an integer, the current offset, but the input string
and its length are passed around to every recognition predicate as two
separate extra input arguments.

The chars approach increases the size of the input to be parsed eight-fold
(it uses one eight-byte cons cell per character), while the single approach
requires allocating a three-word cell on the heap for every character match,
so these should be slower than the other three.
All these alternatives assume that the entire input is available when parsing
starts. For non-interactive applications, this is ok. Interactive applications
can use other representations; they will probably be slower, but interactive
applications typically don’t care about that, since in such systems the user
is usually by far the slowest component.

Mercury backend. The Mercury compiler can generate either low level C code
that is effectively assembler [8] or high level C code that actually uses C
constructs such as functions, local variables, while loops and so on [5].

Memoed predicates. The parser has 92 recognition predicates, and we could
memo an arbitrary subset of these predicates. We ran tests with all recogni-
tion predicates memoed, with no predicates memoed, and 92 versions each
with a single predicate memoed. Based on preliminary results, we also se-
lected four versions with two or three interesting predicates memoed.

None of the Mercury versions had measurable startup times, so we don’t
report them. We also don’t have room to report timing results for all versions
of the Mercury parser, so figure 5 reports only a selection. (The full set of raw
data are available from the Mercury web site, right next to this paper.) The
figures represent user time in seconds; they were obtained by averaging the times
from 22 runs. For each of the ten possible combinations of backend and input
representation, we present times for three out of the 98 variations along the
memoized predicates that we explored:

best: the best time from all the versions we tested;
none: the time with no predicates memoed (equivalent to pure recursive descent

parsing);
all: the time with all predicates memoed (equivalent to packrat parsing).
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Parser version Null load Test load Difference
unoptimized 0.56s 7.54s 6.98s
optimized 0.52s 6.92s 6.40s

Fig. 4. Times for Rats! packrat parser

Backend Input Best None memoed All memoed
high level C chars 3.56s 4.60s (1.29, 77th) 14.08s (3.96, 98th)
high level C single 3.38s 4.14s (1.22, 77th) 13.44s (3.98, 98th)
high level C global 1.30s 1.34s (1.03, 16th) 10.63s (8.18, 98th)
high level C pass1 1.35s 1.36s (1.01, 2nd) 10.66s (7.90, 98th)
high level C pass2 1.24s 1.24s (1.00, 2nd) 10.65s (8.59, 98th)

low level C chars 5.01s 5.03s (1.00, 2nd) 16.58s (3.31, 98th)
low level C single 4.76s 5.01s (1.05, 4th) 15.94s (3.35, 98th)
low level C global 1.82s 1.90s (1.04, 65th) 12.89s (7.08, 98th)
low level C pass1 1.87s 1.92s (1.02, 13th) 13.18s (7.05, 98th)
low level C pass2 2.13s 2.29s (1.08, 85th) 13.71s (6.44, 98th)

Fig. 5. Times for Mercury DCG parser

The none and all columns also contain the ratio between the time in that
column and the best time, and its position in the list of all the 98 times along
the “memoed predicates” dimension from best to worst.

Rats! emits parser code in Java whereas the Mercury compiler emits C code
(compiled with gcc), which makes this aspect something of an apples to oranges
performance comparison.

The Java compiler we used was build 2.3 of IBM’s J9 suite (released April
2007). The Mercury compiler we used was version rotd-2007-08-18; the gen-
erated C code was compiled with gcc 3.4.4 (20050314). The test machine was a
PC with a 2.4 GHz Pentium IV CPU with 512 Kb of cache, 512 Mb of main
memory, running Linux kernel version 2.6.8-2.

4.3 Performance Analysis

There are two main kinds of observations we can make about the performance
data in figures 4 and 5: comparisons between packrat parsing using Rats! and
memoed DCG parsing using Mercury, and comparisons among the various ver-
sions of memoed DCG parsing using Mercury. We start with the latter.

It is clear from figure 5 that memoing all recognition predicates is never a
good idea. For every combination of the other dimensions (backend and input
representation), memoing everything was always the worst possible choice in the
“memoed predicates” dimension. The raw data also shows that it was always
worst by a very wide margin. This effect is so strong that we would be very
surprised if memoing everything turned out not to be the worst choice (from a
similar range of possibilities) for any other grammar.
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Figure 5 also shows that memoing nothing, i.e. using a plain recursive descent
parser, is usually quite close to being the optimal choice. In several cases it is
separated from the best choice by less time than the typical measurement error.

With the low level C backend and using “global” as the input representation,
the speeds of the best 65 versions are all within 4% of each other. This shows
that for most predicates, memoing just that predicate and nothing else is likely
to have only an insignificant effect. again often within measurement error. Our
raw data confirms that the trend also holds for the other nine rows of figure 5,
though in those the clustering is slightly looser.

However, there are some predicates whose memoing leads to significant effects.
For example, memoing the recognizer for the punct nonterminal (whose defini-
tion is punct(Punct) --> match_string(Punct), whitespace) always leads to
significant slowdowns. In each row, it leads to one of the three worst times in
that row, the only worse choices (amongst the ones we tested) being memoing
everything and memoing punct and two other predicates. On the other hand,
memoing the recognizer for the modifiers_opt nonterminal almost always lead
to speedups; the version with only this predicate memoed was the fastest version
for four of the ten rows, and was second, third and fifth fastest respectively in
three other rows.

As it happens, the recognizer predicate for punct is called very frequently,
but in more than 95% of cases it fails immediately, so a call to the recognizer
typically does very little. On the other hand, modifiers_opt looks for zero
or more occurrences of modifier, which requires looking for any one of eleven
keywords, so even in the typical case where none of these is present, it requires
a nontrivial amount of work to recognize this fact.

punct and modifiers_opt are also at opposite ends of the scale when it comes
to the cost of memoing. modifiers_opthas no input apart from the current input
position, and so (for every one of the input representations we tested) checking
whether we have already looked for this nonterminal at this position requires only
a single hash table lookup.1 On the other hand, punct also has another input, the
string to be matched. Computing the string’s hash value requires scanning it, and
comparing the probe string with a hash slot’s occupant requires scanning it again
(at least in the case of a hit), so the table lookup will take significantly more than
twice as long for punct as for modifiers_opt. (Using the address of a string as its
hash value could speed this up, but Mercury doesn’t yet support tabling strings
by their addresses; we are in the process of fixing this.)

These observations are a simple consequence of Amdahl’s law [1]. The effect
on performance of memoing a recognizer predicate depends on

1. the fraction of the runtime of the parser that the predicate accounts for,
2. the ratio of the time taken to execute the recognizer predicate’s body com-

pared to the time taken to perform the table lookup that could avoid that
execution, and

1 With the pass1 and pass2 input representations, the extra arguments are always the
same, so we specify promise implied to ensure that these arguments are not memoed.
This is OK, since we always reset all tables when switching from one file to another.
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3. the probability that the table lookup fails, so you have to execute the pred-
icate body anyway.

The first point is the reason why memoing most predicates doesn’t have a
measurable impact. If a predicate accounts for only a small part of the execu-
tion time, memoing it can’t have more than a small effect either, in which case
not memoing it is better since it does not waste any space (in memory, or more
importantly, in the cache) on the memo table. However, the key point is the
second one: if the table lookup takes at least as long as executing the predi-
cate body, then memoing will yield a slowdown, not a speedup, even if almost
all lookups are hits. Pure recognizers are particularly vulnerable to this effect.
Adding code to build ASTs and/or to evaluate semantic predicates to the bodies
of nonterminals will reduce the relative if not the absolute costs of tabling.

Comparing the performance of the Rats!-generated packrat parser in figure 4
with the performance of the the all-memoed Mercury DCG parser in figure 5
is very difficult because the difference between packrat parsing (including all
the optimizations applied by Rats!) and memoed DCG parsing is confounded by
other differences, chiefly in how the parsers’ executables are generated (Rats! gen-
erates Java, whereas Mercury generates C). If Rats! is ever modified to generate
C, or if the Mercury compiler’s Java backend is ever completed, this confounding
factor would be removed.

Grimm reports [4] that the set of 17 optimizations performed by Rats! (some
of which rely on the presence of hand-written annotations) yield a cumulative
speedup of a factor of 8.9. That was on a different machine and on a different
test load, but by nevertheless applying that factor to the data in figure 4, we can
estimate (very roughly) that a totally unoptimized packrat parser in Java would
take 50 to 60 seconds on our load on our test machine (6.4s ∗ 8.9 = 56.96s). At
16.58 seconds, even the slowest Mercury DCG parser is significantly faster than
that. While some of this is almost certainly due to the Java vs C difference, part
of it is probably due to differences in how the two systems manage their tables.
Likewise, all ten versions of a plain Mercury DCG parser with no memoing are
much faster than the fully optimized Rats! generated packrat parser.

The best parser generated by Rats! (the one with all optimizations applied,
which avoids memoing many nonterminals) is a factor of 8.9 faster than the
worst Rats! parser (the one with no optimizations applied, which memoes all
nonterminals). In most rows of figure 5, the difference between the best and
worst versions is smaller than that. That tells us that Rats! is tapping some
sources of speedup that we don’t. This is not surprising, given that section 8 of
[4] gives a long list of optimizations that we haven’t even tried to apply, even
though they would be worthwhile. However, the fact that we get speedups in the
factor of 3 to factor of 8 range by simply not memoing anything, and some slight
speedups beyond that by carefully selecting one or two predicates to memo,
shows that with this single optimization (memoing almost nothing) we are also
tapping an important source of speedup that Rats! doesn’t.

Rats! actually has an optimization that reduces the set of memoed nonter-
minals, and figure 4 of [4] shows that of the 17 optimizations applied by Rats,
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this one gets one of the two biggest speedups (almost a factor of 2). However,
our data shows that memoing even fewer nonterminals can yield even bigger
speedups.

We think the Rats! technique of starting off by memoing all nonterminals,
and then applying heuristics to choose some nonterminals to not be memoed, is
approaching the problem from the wrong end. We think the right approach is to
start by memoing nothing, and then applying heuristics to choose some nonter-
minals to be memoed. Rats! uses heuristics based on properties of the grammar.
We think that while these have their place, it is much more important to pay
attention to Amdahl’s law and memo a nonterminal only if the expected speedup
due to this step is (a) positive and (b) nontrivial, i.e. likely to be measurable.

The best way to estimate the expected speedup is via feedback from a profiler
that can record the program’s overall execution time, the average time to execute
each nonterminal’s predicate, the average time to table the arguments of that
predicate, and the average hit rate of each table. In the absence of such feedback,
the system can either try to estimate that information from the structure of the
grammar (this approach has had some success in other contexts, e.g. granularity
analysis), or ask the programmer to annotate the predicates that should be
tabled. Running a few experiments with different sets of annotations doesn’t take
very long (figure 5 is based on several thousand such experiments, all driven by
a single script), and in fact may be less work than annotating all the “transient”
nonterminals in a Rats! parser specification.

Of course, adopting no memoing as the default approach means abandoning
the linear time guarantee of packrat parsing; with few or no nonterminals mem-
oed, large chunks of the input may in theory be scanned an exponential number
of times. However, we don’t think this is a problem. First, as many others have
noted [7], exponential behavior just doesn’t seem to happen in practice anyway.
Second, the linear time guarantee always had problems. Tabling everything con-
sumes main memory at a high rate, and so risks starting thrashing, thus dropping
the program from DRAM speed to disk speed. While a theoretician may say the
performance is still linear, that won’t prevent complaints from users. The fact
that many languages nowadays (including Java and Mercury) include a garbage
collector (which must scan the tables at least once in a while, but won’t be able
to recover memory from them) just makes this even worse. Given these facts,
we think that in the absence of a genuine need for a guaranteed linear upper
bound, focusing just on the expected case makes much more sense.

5 Discussion and Conclusion

The PEGs (parsing expression grammars) that underlie packrat parsers and
DCGs (definite clause grammars) have very similar expressive power. While
PEGs usually require support from a specialized tool, DCGs can be implemented
directly in a general purpose programming language. This brings some advan-
tages, for example the ability to use higher order code to abstract away common
patterns and the ability to use standard tools such as debuggers and profilers. In
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this paper, we have shown another of these advantages, which is that if the host
language has support for memoization, then any DCG parser can be turned into
a packrat parser simply by memoizing the predicates implementing the produc-
tion rules. This is by far the simplest way to construct a packrat parser: it uses
a general purpose language feature, it handles the arguments representing the
current offset in the input the same way as any other arguments (such as those
representing a symbol table), and doesn’t even require any new implementation
effort.

However, while it is trivial to turn any DCG parser into a packrat parser, our
data shows that this is almost always a performance loss, not a win. Our data
shows that not memoing any predicates is consistently much faster than mem-
oing all predicates, and that memoing nothing is in fact usually pretty close to
optimal. While generalizing from a sample of one (the Java grammar) is always
dangerous, we believe this result is very likely to hold for the grammar of any
programming language, since these tend to have only relatively few ambiguous
components. (Grammars for natural languages can be expected to have much
more pervasive ambiguity.) Most predicates don’t contribute significantly to the
parser’s runtime, so tabling them just adds overhead in both space and time.
For memoing to yield a benefit, the memoed predicate must contribute signifi-
cantly to the runtime of the parser, and the average running time of one of its
invocations multiplied by the hit rate of the table (the expected savings), must
exceed the time taken by the tabling operations themselves (the cost). We pro-
pose that this be the chief consideration in deciding what predicates to memo in
a recursive descent parser. This consideration is so important that respecting it,
and tabling only a minimal set of predicates (usually only one, sometimes none)
leads to a parser that is significantly faster than the one generated by Rats!,
even though the Rats! applies a whole host of other optimizations we don’t.

The best of both worlds would be a system that respected Amdahl’s law
in choosing what to memo but also applied all the other optimizations ap-
plied by Rats!. Some of them (e.g. factoring out common prefixes that oc-
cur in the conditions of a chain of if-then-elses) are generic enough that it
makes sense to add them to the implementations of general purpose program-
ming languages such as Mercury. Some (e.g. turning the code that recognizes
public | private | protected from a chain of if-then-elses into a decision
tree) are specific to parsers, and thus are appropriate only for a parser genera-
tor. The same is true for Rats!’s support for left-recursive productions.
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Abstract. Tabled evaluation has been proved an effective method to
improve several aspects of goal-oriented query evaluation, including ter-
mination and complexity. Several “native” implementations of tabled
evaluation have been developed which offer good performance, but many
of them require significant changes to the underlying Prolog implementa-
tion, including the compiler and the abstract machine. Approaches based
on program transformation, which tend to minimize changes to both the
Prolog compiler and the abstract machine, have also been proposed, but
they often result in lower efficiency. We explore some techniques aimed
at combining the best of these worlds, i.e., developing an extensible im-
plementation which requires minimal modifications to the compiler and
the abstract machine, and with reasonably good performance. Our pre-
liminary experiments indicate promising results.

Keywords: Tabled logic programming, Implementation, Performance,
Program transformation.

1 Introduction

Tabling [4,19,20] is a resolution strategy which tries to memoize previous calls
and their answers in order to improve several well-known shortcomings found
in SLD resolution. It brings some of the advantages of bottom-up evaluation to
the top-down, goal-oriented evaluation strategy. In particular, evaluating logic
programs under a tabling scheme may achieve termination in cases where SLD
resolution does not (because of infinite loops —for example, the tabled evalu-
ation of bounded term-size programs is guaranteed to always terminate). Also,
programs which perform repeated computations can be greatly sped up. Pro-
gram declarativeness is also improved since the order of clauses and goals within
a clause is less relevant, if at all. Tabled evaluation has been successfully ap-
plied in many fields, such as deductive databases [13], program analysis [5,21],
reasoning in the semantic Web [24], model checking [11], and others.
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In all cases the advantages of tabled evaluation stem from checking whether
calls to tabled predicates, i.e., predicates which have been marked to be evalu-
ated using tabling, have been made before. Repeated calls to tabled predicates
consume answers from a table, they suspend when all stored answers have been
consumed, and they fail when no more answers can be generated. However, the
advantages are not without drawbacks. The main problem is the complexity
of some (efficient) implementations of tabled resolution, and a secondary issue
is the difficulty in selecting which predicates to table in order not to incur in
undesired slow-downs.

Two main categories of tabling mechanisms can be distinguished: suspension-
based and linear tabling mechanisms. In suspension-based mechanisms the com-
putation state of suspended tabled subgoals has to be preserved to avoid back-
tracking over them. This is done either by freezing the stacks, as in XSB [16], by
copying to another area, as in CAT [7], or by using an intermediate solution as
in CHAT [8]. Linear tabling mechanisms maintain a single execution tree where
tabled subgoals always extend the current computation without requiring sus-
pension and resumption of sub-computations. The computation of the (local)
fixpoint is performed by repeatedly looping subgoals until no more solutions can
be found. Examples of this method are the linear tabling of B-Prolog [22,23] and
the DRA scheme [9].

Suspension-based mechanism have achieved very good performance results
but, in general, deep changes to the underlying Prolog implementation are re-
quired. Linear mechanisms, on the other hand, can usually be implemented on
top of existing sequential engines without major modifications but their effi-
ciency is affected by subgoal recomputation. One of our theses is that it should
be possible to find a combination of the best of both worlds: a suspension-based
mechanism that is reasonably efficient and does not require complex modifica-
tions to the compiler or underlying Prolog implementation, thus contributing to
its maintainability an making it easier to port it to other Prolog systems. Also,
we would like to avoid introducing any overhead that would reduce the execution
speed for SLD execution.

Our starting point is the Continuation Call Mechanism presented by Ramesh
and Chen in [14]. This approach has the advantage that it indeed does not need
deep changes to the underlying Prolog machinery. On the other hand it has
shown up to now worse efficiency than the more “native” suspension-based im-
plementations. Our aim is to analyze the bottlenecks of this approach, explore
variations thereof, and propose solutions in order to improve its efficiency while
keeping tabling-related changes clearly separated from the basic WAM imple-
mentation. While the approach may not necessarily be significantly simpler than
other (native) approaches, we will argue that it does allow a more modular design
which reduces and isolates in separate modules the changes made to the under-
lying WAM. This hopefully will make it easier to maintain the implementation
of both tabling and the WAM itself, as well as adapting the tabling scheme and
code to other Prolog systems.
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In more concrete terms, and in the spirit of [14], the implementation we will
propose tries to be non intrusive and change only minimally the initial WAM,
moving the low-level tabling data structures either to the Prolog level or to
external modules. Other systems, like Mercury [18], also implement tabling using
external modules and program transformation, so as not to change the compiler
and runtime system. Despite these similarities, the big differences in the base
language make the implementation technically very different also.

2 Tabling Basics

We now sketch how tabled evaluation works from a user point of view (more de-
tails can be found in [4,16]) and briefly describe the continuation call mechanism
implementation technique proposed in [14], on which we base our work.

2.1 Tabling by Example

We use as running example the program in Figure 1, taken from [14], whose
purpose is to determine reachability of nodes in a graph We ignore for now
the :- tabled path/2 declaration (which instructs the compiler to use tabled
execution for the designated predicate), and assume that SLD resolution is to
be used. Then, a query such as ?- path(a, N). may never terminate if, for
example, edge/2 represents a cyclic graph.

Adding the :- tabled declaration forces the compiler and runtime system to
distinguish the first occurrence of a tabled goal (the generator) and subsequent
calls which are identical up to variable renaming (the consumers). The generator
applies resolution using the program clauses to derive answers for the goal. Con-
sumers suspend the current execution path (using implementation-dependent
means) and start execution on a different branch. When such an alternative
branch finally succeeds, the answer generated for the initial query is inserted
in a table associated with the original goal. This makes it possible to reactivate
suspended calls and to continue execution at the point where they were stopped.
Thus, consumers do not use SLD resolution, but obtain instead the answers from
the table where they were inserted previously by the producer. Predicates not
marked as tabled are executed following SLD resolution, hopefully with (minimal
or no) overhead due to the availability of tabling in the system.

2.2 The Continuation Call Technique

The continuation call technique [14] implements tabling by a combination of
program transformation and side effects in the form of insertions into and re-
trievals from a table which relates calls, answers, and the continuation code to be
executed after consumers read answers from the table. We will now sketch how
the mechanism works using the path/2 example (Figure 1). The original code is
transformed into the program in Figure 2 which is the one actually executed.

Roughly speaking, the transformation for tabling is as follows: a bridge pred-
icate for path/2 is introduced so that calls to path/2 made from regular Prolog
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:- tabled path/2.

path(X, Z):-
edge(X, Y),
path(Y, Z).

path(X, Z):-
edge(X, Z).

Fig. 1. A sample program

path(X, Y):- slg (path(X, Y)).

slg path (path(X, Y), Id):-
edge(X, Y),
slgcall (Id , [X], path(Y, Z), path cont).

slg path (path(X, Y), Id):-
edge(X, Y),
answer(Id , path(X, Y)).

path cont(Id , [X], path(Y, Z)):-
answer(Id , path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
formed for tabled execution

execution do not need to be aware of the fact that path/2 is being tabled. The
call to the slg/1 primitive will ensure that its argument is executed to com-
pletion and will return, on backtracking, all the solutions found for the tabled
predicate. To this end, slg/1 starts by inserting the call in the answer table and
generating an identifier for it. Control is then passed to a new, distinct predicate:
in this case, slg path/2.1 slg path/2 receives in the first argument the original
call to path/2 and in the second one the identifier generated for the parent call,
which is used to relate operations on the table with this initial call. Each clause
of slg path/2 is derived from a clause of the original path/2 predicate by:

– Adding an answer/2 primitive at the end of each clause resulting from a
transformation and which is not a bridge to call a continuation predicate.
answer/2 is responsible for checking for redundant answers and executing
whatever continuations (see the following item) there may be associated with
that call identified by its first argument.

– Instrumenting recursive calls to path/2 using the slgcall/4 primitive. If
the term passed as an argument (i.e., path(X, Y)) is already in the table,
slgcall/4 creates a new consumer which consumes answers from the ta-
ble. Otherwise, the term is inserted in the table with a new call identifier
and execution follows using the slg path/2 program clauses to derive new
answers. In the first case, path cont/3 is recorded as (one of) the continua-
tion(s) of path(X, Y) and slgcall/4 fails. In the second case path cont/3
is only recorded as a continuation of path(X, Y) if the tabled call cannot
be completed. The path cont/3 continuation will be called from answer/2
after inserting a new answer or erased upon completion of path(X, Y).

– The body of path cont/3 encodes what remains of the clause body of path/2
after the recursive call. It is constructed in a similar way to slg path/2,
i.e., applying the same transformation as for the initial clauses and calling
slgcall/4 and answer/2 at appropriate times.

1 The distinct name has been created for simplicity by prepending slg to the predicate
name –any safe means of constructing a unique predicate symbol can be used.
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answer( callid Id , term Answer) {
insert Answer in answer table
If (Answer /∈ answer table)

for each continuation call C
of tabled call Id {

call (C) consuming Answer;
}

return FALSE;
}

Fig. 3. Pseudo-code for answer/2

slgcall ( callid Parent, term Bindings,
term Call , term CCall) {

Id = insert Call into answer table ;
if (Id . state == READY) {

Id . state = EVALUATING;
call the transformed clause of Call ;
check for completion;

}
consume answers for Id ;
if (Id . state != COMPLETE)

add a new continuation
call (CCall , Bindings) to Id ;

return FALSE;
}

Fig. 4. Pseudo-code for slgcall/4

The second argument of slgcall/4 and path cont/3 is a list of bindings
needed to recover the environment of the continuation call. Note that, in the
program in Figure 1, an answer to a query such as ?- path(X, Y) may need to
bind variable X. This variable does not appear in the recursive call to path/2, and
hence it does not appear in the path/2 term passed on to slgcall/4 either. In
order for the body of path cont/3 to insert in the table the answer corresponding
to the initial query, variable X (and, in general, any other necessary variable) has
to be passed down to answer/2. This is done with the list [X], which is inserted
in the table as well and completes the environment needed for the continuation
path cont/3 to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are
used in the continuation, including the answer/2 primitive if there is one in the
continuation —this is the case in our example. Variables appearing in the tabled
call itself do not need to be included, as they will be passed along anyway.

Recovering a previous execution environment is an important operation in
tabled execution. Other approaches to this end are the use of forward trail and
freeze registers of SLG-WAM [16], which involves using lower-level mechanisms.
The continuation call approach, which performs several tabling operations at the
Prolog level through program transformation and can a priori be expected to be
somewhat slower, has, however, the nice property that the implementation does
not need to change the underlying WAM machinery, which helps its adaptation it
to different Prolog systems. On the other hand, the table management is usually,
and for efficiency reasons, written using some lower-level language and accessed
using a suitable interface.

The pseudo-code for answer/2 and slgcall/4 is shown in Figures 3 and 4,
respectively. The pseudo-code for slg/1 is similar to that of slgcall/4 but, in-
stead of consuming answers, they are returned on backtracking and it finally fails
when all the stored answers have been exhausted. The program transformation
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and primitives try to complete subgoals as soon as possible, failing whenever
new answers are found. Thus, they implement the so-called local scheduling [16].

Checking for completion: The completion detection algorithm (see [17] for
more details) is similar to that in the SLG-WAM. We just provide a sketch
here. Completion is checked for in the execution of the slgcall/4 primitive
after exhausting all alternatives for the subgoal call at hand and resuming all
of its consumers. To do that, we use two auxiliary fields in the table entry
corresponding to every subgoal, SgFr dfn and SgFr dep, to quickly determine
whether such a subgoal is a leader node. The SgFr dfn field reflects the or-
der in which the subgoals being evaluated were called. New subgoal frames are
numbered incrementally as they are created, adding one to the SgFr dfn of the
previous (youngest) subgoal, whose frame is always pointed to by the global vari-
able SF TOP. SgFr dep holds the number of the older call on which it depends,
which is initialized with the same number as SgFr dfn, meaning that initially
no dependencies exist. If P1, a tabled subgoal already inserted in the table, is
called from the execution of another tabled subgoal, P2, the SgFr dep field of
the table entry of P2 is updated with the value of SgFr dep field of P1, meaning
P2 depends on P1. When checking for completion, and using this information
from the table entries, a subgoal can quickly determine whether it is a leader
node. If SgFr dfn = SgFr dep, then we know that during its evaluation no de-
pendencies to older subgoals have appeared and thus the Strongly Connected
Component (SCC) including the subgoals starting from the table entry referred
to by SF TOP up to the current subgoal can be completed. On the other hand, if
SgFr dep < SgFr dfn, we cannot perform completion. Instead, we must propa-
gate the current dependency to C, the subgoal call that continues the evaluation.
To do that, the SgFr dep field is copied to SgFr dep field of C, and completion
can be performed only when the computation reaches the subgoal that does not
depend on older subgoals.

Issues in the Continuation Call Mechanism: We have identified two perfor-
mance-related issues when implementing the technique sketched in the previous
section. The first one is rather general and related to the heavy use of the inter-
face between C and Prolog (in both directions) that the implementation makes,
which adds an overhead which cannot be neglected.

The second one is the repeated copying of continuation calls. Continuation
calls (which are, in the end, Prolog predicates with an arbitrarily long list of
variables as an argument) are completely copied from Prolog memory to the ta-
ble for every consumer found. Storing a pointer to these structures in memory is
not enough, since slg/1 and slgcall/4 fail immediately after associating a con-
tinuation call with a tabled call in order to force the program to search for more
solutions and complete the tabled call. Therefore, the data structures created
during forward execution may be removed on backtracking and not be avail-
able when needed. Reconstructing continuations as Prolog terms from the data
stored in the table when they are resumed to consume previously stored answers
is necessary. This can also clearly have a negative impact on performance.
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Finally, an issue found with the implementation we started with [15] (which is
a version of [14] in Yap Prolog) is that it did not allow backtracking over Prolog
predicates called from C, which makes it difficult to implement other scheduling
strategies. Since this shortcoming may appear also in other C interfaces, it is a
clear candidate for improvement.

3 An Improvement over the Continuation Call Technique

We now propose some improvements to the different limitations of the original
design and implementation that we discussed in Section 2.2. In order to measure
execution times, we are taking the implementation described in [15] to be close
enough to that described in [14] in order to be used as a basis for our devel-
opments. It is also an implementation of high quality whose basic components
(e.g., tables based on tries, following [12]) are similar to those in use in current
tabling systems. This implementation was ported to Ciao, where the rest of the
development was performed. In what follows this initial port to Ciao will be
termed the “baseline implementation.”

3.1 Using a Lower-Level Interface

Calls from C to Prolog were initially performed using a relatively high-level
interface similar to those commonly found in current state of the art logic pro-
gramming systems: operations to create and traverse Prolog terms appear to the
programmer as regular C functions, and details of the internal data representa-
tion are hidden to the programmer. This interface imposed a noticeable overhead
in our implementation, as the calls to C functions had to allocate environments,
pass arguments, set up Prolog environments to call Prolog from C, etc.

In order to make our implementation as fast as possible, a possibility is to
integrate all the C code into the WAM and try to avoid altogether costly format
conversions, etc. However, as mentioned before, we preferred to make as few
changes as possible in the WAM. Therefore we chose to use directly lower-level
operations and take advantage of facilities (e.g., macros) initially designed to
be internally used by the WAM. While this in principle makes porting more
involved, the fact is that the facilities provided in C interfaces for Prolog and
the internal WAM operations are typically quite related and similar, since they
all provide an interface to an underlying architecture and data representation
which is common to many Prolog implementations.

Additionally, the code which constructs Prolog terms and performs calls from
C is the same regardless of the program being executed and its complexity is
certainly manageable. Therefore, we decided to skip the programmer interface
and call directly macros available in the engine implementation. That was not a
difficult task and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue in the continuation call technique (and, possibly, in other cases)
is the use of a C-to-Prolog interface to call Prolog goals from C — e.g., when
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continuations, which have been internally stored, have to be resumed, as done
by slgcall/4 and answer/2. We wanted to design a solution which relied as
little as possible on non-widely available characteristics of C-to-Prolog interfaces
(to simplify porting the code), but which kept the efficiency as high as possible.

The general solution we have adopted is to move calls to continuations from
the C level to the Prolog level by returning them as a term, using an extra
argument in our primitives, to be called from Prolog. This is possible since con-
tinuations are rewritten as separate, unique predicates which therefore have an
entry point accessible from Prolog. If several continuations have to be called, they
can be returned and invoked one at a time on backtracking,2 and fail when there
is no pending continuation call. New continuations generated during program
execution can be destructively inserted at the end of the list of continuations
transparently to Prolog. Additionally, this avoids using up C stack space due to
repeated Prolog → C → Prolog → . . . calls, which may exhaust the C stack.
Moreover, the C code is somewhat simplified (e.g., there is no need to set up a
Prolog environment to be used from C) which makes using a lower-level, faster
interface less of a burden.

3.3 Freezing Continuation Calls

In this section we sketch some proposals to reduce the overhead associated with
the way continuation calls are handled in the original continuation call proposal.

Resuming consumers: Our starting point saves a binding list in the table to
reinstall the environment of consumers when they have to be resumed. This is a
relatively non-intrusive technique, but it requires copying terms back and forth
between Prolog and the table where calls are stored. Restarting a consumer needs
to construct a term whose first argument is the new answer (which is stored in
the heap), the second one is the identifier of the tabled goal (an atomic item),
and the third one a list of bindings (which may be arbitrarily large). If the list
of bindings has N elements, constructing the continuation call requires creating
≈ 2N + 4 heap cells. If a continuation call is resumed often and N is high, the
efficiency of the system can degrade quickly.

The technique we propose constructs continuation calls on the heap as regular
Prolog terms. As these continuations are later recovered through a unique call
identifier, and each continuation is unified with a new, fresh variable (CCall
in resume ccalls/4, Figure 7), full unification or even pattern matching are
unnecessary, and resuming a continuation is a constant time operation.

However, the fragment of code which constructs the continuation call performs
backtracking to continue exploring pending branches. This will remove the con-
structed call from the heap. Protecting that term is needed to make it possible
to construct it only once and reuse it later. A feasible and simple solution is to
freeze continuation calls in a memory area which is not affected by backtracking.
2 This exploits being able to write non-deterministic predicates in C. Should this

feature not be available, a list of continuations can always be returned instead which
will be traversed on backtracking using member/2.
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This will in principle make the aforementioned problem disappear. Selecting a
brand new area will, however, bring additional issues as some WAM instructions
would have to be changed in order to take it into account: for example, variable
binding direction is commonly determined using the addresses of variables (in
addition to their tags) so that younger variables point to older variables in order
to save trailing. One easy way to reconcile existing WAM machinery with this
continuation call area is to reserve part of the heap for it. This makes the usual
WAM assumptions to hold and exactly the same WAM instructions can be used
to construct and traverse data structures both in the regular heap and in the
continuation call area. Therefore, regarding forward execution and backtrack-
ing, only minimal changes (e.g., the initialization of the H pointer, and selecting
the right read/write heap pointer when dealing with the regular heap or the
continuation call zone) have to be introduced.

Figure 5 shows the state of the choicepoint stack and heap (both assumed to
grow downwards) before freezing a continuation call. Figure 6 shows the contin-
uation call (C, [X,1,2], Ans) frozen at the beginning of the heap, where it is
unaffected by backtracking as the WAM execution started with the H pointer
placed just after the continuation call zone. In order to recover the continuation
calls, a new field is added to the table pointing to a (Prolog) list whose elements,
in turn, point to every continuation found so far for a given tabled goal.

This makes freezing a continuation call require some extra time in order to
copy it on the heap. However, resuming a continuation is a constant time oper-
ation. Other systems, like CHAT or SLG-WAM, spend some extra time while
preparing a consumer to be resumed, as they need to record bindings in a for-
ward trail in order to later reinstall them. In our case, when the continuation is
to be executed, the list of bindings carried with it is unified with the variables
in its body, implementing essentially the same functionality as the forward trail.

In a previous paper [6] we presented a preliminary version of this technique
where the heap was frozen by manipulating the contents of some choicepoints,
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in what can be seen as a variant of CHAT. The work presented herein works
around several drawbacks in that approach.

Memory management for continuation space: As mentioned before, the
area for continuations is taken from the same memory zone where the general
heap is located, thus making it possible to use the same WAM instructions
without any change. In case more memory is needed, reallocating the heap and
the continuation area can be done simultaneously, keeping the same placement
relation between both. As data inside both areas has the same format, adjusting
pointers can be done using memory management routines already existing for
the regular WAM implementation, which only have to be updated to take into
account the existence of a gap of unused memory between the continuation
call and regular heap areas. Additionally, sliding the heap within its zone to
make room for more heap or for more continuations amounts only to readjusting
pointers by a constant amount.

Frozen continuations are, in principle, only reachable from the table struc-
ture, which makes them candidates to be (wrongly) removed in case of garbage
collection. A possible solution which needs almost no change to the garbage col-
lector is to link a Prolog list L from some initial, dummy choice point. Each
element in L points to the continuation list of a generator, which makes all the
continuations reachable by the garbage collector, and therefore protected. When
a generator is completed all of its answers are already stored in the trie, and
its continuations are no longer needed. Removing the pointer from L to this list
of unneeded continuations will make garbage collection reclaim their space. In
order to adjust the pointers from table entries to the continuations when these
are reallocated after a garbage collection, each element of L includes a pointer
back to the corresponding table entry which can be used to quickly locate which
pointers have to be updated in the table entries. A new routine has to be added
to the garbage collector to perform this step.

Avoiding trail management to recover a continuation call state: The
same term T corresponding to a continuation call C can be used several times to
generate multiple answers to a query. This is in general not a problem as answers
are in any case saved in a safe place (e.g., the answer table), and backtracking
would undo the bindings to the free variables in T . There is, however, a particular
case which needs special measures. When a continuation call C1, identical to C,
is resumed within the scope of C, and it is going to read a new answer, the state
of T has to be reset to its frozen initial state. Since C1 is using the same heap
term T as C, we say that C1 is a reusing call.

The solution we present tries to eliminate the need for treating reusing calls
as a special case of a continuation call. Reusing calls appear because our baseline
implementation resumes continuations when new answers are found, just when
we could be in the scope of an identical continuation call. But resumptions can
be delayed until the moment in which we are going to check for completion (in
the generator) and then the continuation calls with unconsumed answers can
be resumed. Following this approach there are no reusing calls because a new
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continuation call is never resumed within the scope of another continuation call
and we do not need to do any trail management.

New tabling primitives and translation for path/2: Figure 7 shows the
new program transformation we propose for the path/2 program in order to
take into account the ideas in the previous sections. Variables Pred, CCall, and
F will contain goals built in C but called from Prolog (Section 3.2). The third and
fourth arguments of resume ccalls/4 implement a trick to create a choicepoint
with dummy slots which will be used to store pointers to the next continuation
to execute and to the generator whose continuations we are resuming. Creating
such a slot in this way, at the source level, avoids having to change the structure
of choicepoints and how they are managed in the abstract machine.

In the clause corresponding to path/2, the primitive slg/1 shown in Figure 2
is now split into slgcall/3, execute generator/2, and consume answer/2.
slgcall/3 tests whether we are in a generator position. In that case, it con-
structs a new goal from the term passed as first argument (the term slg path/2
will be constructed in this case). This goal is returned in variable Pred, which
will be called later. Otherwise, the goal true will be returned.

This new goal is always passed to execute generator/2 which executes it. If
it is true it will succeed, and the execution will continue with consume answer/2.
However, slg path/2 is ensured to ultimately fail (because the solutions to the
tabled predicate are generated by storing answers into the table and failing in
answer/2), so that the “else” part of execute generator/2 is taken. There,
consumers are resumed before checking for completion and consume answer/2
returns, on backtracking, each of the answers found for path(X, Y).

slg path/2 is similar to path/2 but it does not have to return all solutions
on backtracking, as consume answer/2 does. Instead, it has to generate all pos-
sible solutions and save them: new ccall/5 inserts a new continuation if the
execution of path(Z,Y) is not complete. Otherwise, it uses path cont 1 as the
main functor of a goal whose arguments are answers consumed from the table.
This goal is returned in F and immediately called. In this particular case the
(recursive) call to path/2 is the last goal in the recursive clause (see Figure 1),
and therefore the continuation directly inserts the answer in the table.

Finally, answer/2 does not resume continuations anymore to avoid reusing
calls, since resume ccalls/4 resumes all the continuations of the tabled call
identified by Sid and its dependent generators before checking for completion.

3.4 Freezing Answers

When resume ccalls/4 is resuming continuation calls, answers found for the
tabled calls so far are used to continue execution. These answers are, in prin-
ciple, stored in the table (i.e., answer/2 inserted them), and they have to be
constructed on the heap so that the continuation call can access them and pro-
ceed with execution.

The ideas in Section 3.3 can be reused to freeze the answers and avoid the
overhead of building them again. As done with the continuation calls, a new
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path(X,Y) :-
slgcall (path(X, Y), Sid , Pred),
execute generator (Pred,Sid ),
consume answer(path(X, Y), Sid).

slg path (path(X, Y),Sid) :-
edge(X, Z),
slgcall (path(Z, Y), NSid, Pred),
execute generator (Pred,NSid),
new ccall (Sid , NSid, [X],

path cont 1, F),
call (F).

slg path (path(X, Y), Sid) :-
edge(X, Y),
answer(path(X, Y), Sid ).

path cont 1(path(X, Y), Sid , [Z]) :-
answer(path(Z, Y), Sid ).

execute generator (Pred,Sid) :−
(

call (Pred) −>
true

;
resume ccalls (Sid ,CCall ,0,0),
call (CCall)

).

Fig. 7. New program transformation for right-recursive definition of path/2

field is added to the table pointing to a (Prolog) list which holds all the answers
found so far for a tabled goal. This list will be traversed for each of the consumers
of the corresponding tabled call. In spite of this freezing operation, answers to
tabled goals are additionally stored in the table. There are two reasons for this:
the first one is that when some tabled goal is completed, all the answers have
to be accessible from outside the derivation tree of the goal. The second one is
that the table makes checking for duplicate answers faster.

3.5 Repeated Continuation Calls

Continuation calls could be duplicated in a table entry, which forces an unnec-
essary recomputation when new answers are found. This problem can also show
up in other suspension-based tabling implementations and it can degrade the
efficiency of the system. As an example, if the program in Figure 7 is executed
against a graph with duplicate edge/2 facts, duplicate continuation calls will be
created, as edge(X, Z) in the body of slg path/2 can match two identical facts
and return two identical bindings which will make new ccall/4 to insert two
identical continuations. Since we traverse the new continuations to copy them
in the heap, we can check for duplicates before storing them without having to
pay an excessive performance penalty. As done with answers, a trie structure is
used to check for duplicates in an efficient manner.

4 Performance Evaluation

We have implemented the proposed techniques as an extension of the Ciao sys-
tem [1]. Tabled evaluation is provided to the user as a loadable package that pro-
vides the new directives and user-level predicates, performs the program trans-
formations, and links in the low-level support for tabling. We have implemented
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Table 1. Terse description of the benchmarks used

lchain X Left-recursive path program, unidimensional graph.
lcycle X Left-recursive path program, cyclic graph.
rchain X Right-recursive path program (this generates more continuation

calls), unidimensional graph.
rcycle X Right-recursive path program, cyclic graph.
rcycleR X Right-recursive path program, cyclic graph with repeated edges.
rcycleF X Like rcycle 256, but executing fib(20, ) before edge/2 goals.
numbers X Find arithmetic expressions which evaluate to some number N

using all the numbers in a list L.
numbers Xr Same as above, but all the numbers in L are all the same (this

generates a larger search space).
atr2 A parser for Japanese.

Table 2. Speed comparison of three Ciao implementations

Benchmark Ciao + Ccal (baseline) Lower C interf. Ciao + CC

lchain 1,024 7.12 2.85 1.89

lcycle 1,024 7.32 2.92 1.96

rchain 1,024 2,620.60 1,046.10 557.92

rcycle 1,024 8,613.10 2,772.60 1,097.26

numbers 5 1,691.00 781.40 772.10

numbers 5r 3,974.90 1,425.48 1,059.93

and measured three variants: the first one is based on a direct adaptation of
the implementation presented in [15], using the standard, high-level C interface.
We have also implemented a second variant in which the lower-level and sim-
plified C interface is used, as discussed in Sections 3.1 and 3.2. Finally, a third
variant, which we call CC (Callable Continuations), incorporates the proposed
improvements to the model discussed in Sections 3.3 and 3.4.

We evaluated the impact of this series of optimizations by using some of the
benchmarks in Table 1. The results are shown in Table 2, where times are given
in milliseconds. Lowering the level of the C interface and improving the trans-
formation for tabling and the way calls are performed have a clear impact. It
should also be noted that the latter improvement seems to be specially relevant
in non-trivial programs which handle data structures (the larger the data struc-
tures are, the more re-copying we avoid) as opposed to those where little data
management is done. On average, we consider the version reported in the right-
most column to be the implementation of choice among those we have developed,
and this is the one we will refer to in the rest of the paper.

Table 3 tries to determine how the proposed implementation of tabling com-
pares with state-of-the-art systems —namely, the latest available versions of
XSB, YapTab, and B-Prolog, at the time of writing. In this table we provide, for
several benchmarks, the raw time (in milliseconds) taken to execute them us-
ing tabling and, when possible, SLD resolution. Measurements have been made
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on Ciao-1.13, using the standard, unoptimized bytecode-based compilation, and
with the CC extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and
B-Prolog 7.0. All the executions were performed using local scheduling and dis-
abling garbage collection; in the end this did not impact execution times very
much. We used gcc 4.1.1 to compile all the systems, and we executed them on
a machine with Fedora Core Linux, kernel 2.6.9, and an Intel Xeon processor.

Analyzing the behavior of the rcycle X benchmark, which is an example
of almost pure tabling evaluation, we observe that our asymptotic behavior is
similar to other tabling approaches. If we multiply X by N , the resulting time for
all of the systems (except YapTab) is multiplied by approximately 2N . YapTab
does not follow the same behavior, and, while we could not find out exactly the
reason, we think it is due to YapTab on-the-fly creating an indexing table which
selects the right edge/2 clause in constant time, while other implementations
spend more time performing a search.

B-Prolog, which uses a linear tabling approach, is the fastest SLG resolution
implementation for rcycle X, since there is no recomputation in that bench-
mark. However, efficiency suffers if a costly predicate has to be recomputed: this
is what happens in rcycleF, where we added a call to a predicate calculating
the 20th Fibonacci number before each of the calls to edge/2 in the body of
path/2. This is a (well-known) disadvantage of linear tabling techniques which
does not affect suspension-based approaches. It has to be noted, however, that
current versions of B-Prolog implement an optimized variant of its original lin-
ear tabling mechanism [22] which tries to avoid reevaluation of looping subgoals.
The impact of recomputation is, therefore, not as important as it may initially
seem. Additionally, in our experience B-Prolog is already a very fast SLD sys-
tem, and its speed seems to carry on to SLG execution, which makes it, in our
experiments, the fastest SLG system in absolute terms, except when unneeded
recomputation is performed.

The ideas discussed in Section 3.5 show their effectiveness in the rcycleR 2048
benchmark,whereduplicating the clauses of edge/2produces repeated consumers.
While B-Prolog is affected by a factor close to 2, and XSB and YapTab by a factor
of 1.5, the Ciao+CC implementation is affected only by a factor of a 5% because it
does not add repeated consumers to the tabled evaluation.

In order to compare our implementation with XSB, we must take into ac-
count that XSB is somewhat slower than Ciao when executing programs using
SLD resolution —at least in those cases where the program execution is large
enough to be really significant (between 1.8 and 2 times slower for these non-
trivial programs). This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has
an additional overhead (reported to be around 10% [16]) not present in other
Prolog systems and also presumably that the priorities of their implementors
were understandably more focused on the implementation of tabling. However,
XSB executes tabling around 1.8 times faster than our current implementation,
confirming, as expected, the advantages of the native implementation, since we
perform some operations at the Prolog level.
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Table 3. Comparing Ciao+CC with XSB, YapTab, and B-Prolog

Ciao+CC XSB YapTab B-Prolog
Program SLD Tabling SLD Tabling SLD Tabling SLD Tabling

rcycle 256 - 70.57 - 36.44 - 59.95 - 26.02

rcycle 512 - 288.14 - 151.26 - 311.47 - 103.16

rcycle 1,024 - 1,097.26 - 683.18 - 1,229.86 - 407.95

rcycle 2,048 - 4,375.93 - 3,664.02 - 2,451.67 - 1,596.06

rcycleR 2,048 - 4,578.50 - 5,473.91 - 3,576.31 - 2,877.60

rcycleF 256 - 1,641.95 - 2,472.61 - 1,023.77 - 2,023.75

numbers 3r 1.62 1.39 3.61 1.91 1.87 1.08 1.46 1.13

numbers 4r 99.74 36.13 211.08 51.72 108.08 29.16 83.89 22.07

numbers 5r 7,702.03 1,059.93 16,248.01 1,653.82 8,620.33 919.88 6,599.75 708.40

atr2 - 703.19 - 581.31 - 278.41 - 272.55

Although this lower efficiency is obviously a disadvantage of our implemen-
tation, it is worth noting that, since our approach does not introduce changes
neither in the WAM nor in the associated Prolog compiler, the speed at which
non-tabled Prolog is executed remains unchanged. In addition to this, the mod-
ular design of our approach gives better chances of making it easier to port to
other systems. In our case, executables which do not need tabling have very
little tabling-related code, as the data structures (for tries, etc.) are created as
dynamic libraries, loaded on demand, and only stubs are needed in the regular
engine. The program transformation is taken care of by a package (a plugin for
the Ciao compiler) [2] which is loaded and active only at compile time.

In non-trivial benchmarks like numbers Xr, which at least in principle should
reflect more accurately what one might expect in larger applications, execution
times are in the end somewhat favorable to Ciao+CC when comparing with
XSB. This is probably due to the faster raw speed of the basic engine in Ciao
but it also implies that the overhead of the approach to tabling used is reasonable
after the proposed optimizations. In this context it should be noted that in these
experiments we have used the baseline, bytecode-based compilation and abstract
machine. Turning on global analysis and using optimizing compilers [3,10] can
further improve the speed of the SLD part of the computation.

The results are also encouraging to us because they appear to be another
example supporting the “Ciao approach:” start from a fast and robust, but
extensible LP-kernel system and then include additional characteristics by means
of pluggable components whose implementation must, of course, be as efficient
as possible but which in the end benefit from the initial base speed of the system.

We have not analyzed in detail the memory consumption behavior of the
continuation call technique, as we are right now working on improving it. How-
ever, since we copy the same part of the heap CAT does, but using a different
strategy, and we eventually (as generators are completed) get rid of the data
structures corresponding to the frozen continuation calls, we foresee that our
memory consumption should currently be in the same range as that of CAT.
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5 Conclusions

We have reported on the design and efficiency of some improvements made to
the continuation call mechanism of Ramesh and Chen. While, as expected, we
cannot achieve using just these techniques the same level of performance dur-
ing tabled evaluation as the natively implemented approaches our experimental
results show that the overhead is essentially a reasonable constant factor, with
good scaling and convergence characteristics. We argue that this is a useful
result since the proposed mechanism is still easier to add to an existing WAM-
based system than implementing other approaches such as the SLG-WAM, as
it requires relatively small changes to the underlying execution engine. In fact,
almost everything is implemented within a fairly reusable C library and using a
Prolog program transformation. Our main conclusion is that using an external
module for implementing tabling is a viable alternative for adding tabled evalu-
ation to Prolog systems, especially if coupled with the proposed optimizations.
It is also an approach that ties in well with the modular approach to extensions
which is an integral part of the design of the Ciao system.
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Abstract. We present the design and prototype implementation of the
scheduling component in ArTCoP (architecture transparent control of
parallelism), a novel run-time environment (RTE) for parallel execution
of high-level languages. A key feature of ArTCoP is its support
for deep process and memory hierarchies, shown in the scheduler
by supporting light-weight threads. To realise a system with easily
exchangeable components, the system defines a micro-kernel , providing
basic infrastructure, such as garbage collection. All complex RTE
operations, including the handling of parallelism, are implemented at
a separate system level. By choosing Concurrent Haskell as high-level
system language, we obtain a prototype in the form of an executable
specification that is easier to maintain and more flexible than con-
ventional RTEs. We demonstrate the flexibility of this approach by
presenting implementations of a scheduler for light-weight threads in
ArTCoP, based on GHC Version 6.6.

Keywords: Parallel computation, functional programming, scheduling.

1 Introduction

In trying to exploit the computational power of parallel architectures ranging
from multi-core machines to large-scale computational Grids, we are currently
developing a new parallel runtime environment, ArTCoP, for executing parallel
Haskell code on such complex, hierarchical architectures. Central to the design
of ArTCoP is the concept of deep memory and deep process hierarchies. The
system uses different control mechanisms at different levels in the hierarchy.
Thus, data access and presence of parallelism can be transparent to the language
level. For the memory management this provides a choice of using explicit data
distribution or virtual shared memory. For the process management this means
that units of computation are very light-weight entities, and we explicitly control
the scheduling of these units. In this paper we focus on the scheduling component
of the system.
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Our modular design defines a minimal micro-kernel . More complex operations
are implemented in a high-level system language (Concurrent Haskell) outside
this kernel. As a result, this design provides an executable specification and all
code presented in this paper has been tested in the context of a modified runtime-
environment (RTE) of the Glasgow Haskell Compiler (GHC) Version 6.6.

Immediate benefits of this design are the ease of prototyping and of replacing
key components of the RTE — issues of particular importance in complex parallel
systems such as computational grids [6], incorporating thousands of machines on
a global scale. Supporting such global architectures, as well as emerging multi-
core machines, requires support for deep memory and process hierarchies, which
use different implementations, depending on the underlying architecture or other
system features. Additionally the system needs to be adaptive in the sense that
it dynamically adapts its behaviour to dynamically changing characteristics of
the parallel machine.

In this sense, ArTCoP provides a generic and adaptive system for parallel
computation, combining features of our existing parallel RTEs for GpH [19] and
Eden [2,3]. We present a prototype implementation of key concepts in such a
system in the form of an executable specification, amenable to formal reasoning.
We arrive at a system with a clear modular design, separating basic compo-
nents by their functionality and employing a hierarchy with increasing levels of
abstraction. The micro-kernel of this system is accessed via a narrow interface,
and most of the coordination of the system is realised in a functional language.
We demonstrate the flexibility of the system by refining a simple scheduler and
adding sophisticated work distribution policies.

2 Related Work

Work in the 80s on high-level languages for system-level programming mainly
focused on how to implement O/S concepts in a functional [8,14,18] or logic [17]
style. Most of these systems introduce specific primitives to deal with non-
determinism, whereas later approaches either insisted on maintaining determin-
istic behaviour [9] or used special data structures to control interactions between
concurrent threads (such as MVars in Concurrent Haskell [15]). Early implemen-
tations of functional operating systems are NEBULA [11] and KAOS [20]. More
recent functional systems are Famke [21] and Hello [4].

An early system that uses a micro-kernel (or substrate) approach in the RTE,
is the Scheme-based Sting [10] system. Sting defines a coordination layer on top
of Scheme, which is used as computation language. Genericity is demonstrated
by directly controlling concurrency and processor abstractions, via Scheme-level
policy managers, responsible for scheduling, migration etc. This general frame-
work supports a wide range of features, such as (first-order) light-weight threads,
thread pre-emption, and asynchronous garbage collection. Common paradigms
for synchronisation (e.g. master-slave parallelism, barrier communication etc)
are implemented at system level and demonstrate the possibility to easily de-
fine application-optimised synchronisation patterns. However, since Sting uses
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Scheme as a system level language, it lacks the clear separation of pure and im-
pure constructs at system level as offered by Haskell. We also consider the static
type safety for system level code, provided by Haskell, an advantage.

Most closely related to our high-level language approach to O/S design is [7].
It defines a Haskell interface to low-level operations and uses a hardware monad
to express stateful computations. It focuses on safety of system routines, using
its own assertion language and Haskell’s strong type system. This interface has
been used to code entire O/S kernels (House, Osker) directly in Haskell, reporting
satisfying performance. In contrast to this proof-of-concept approach, we want to
improve maintainability by realising the more complex RTE routines in Haskell,
but still keeping a micro-kernel implemented in a low-level language.

Another related project, the Manticore [5] system, targets parallelism at mul-
tiple levels, and enables the programmer to combine task and data parallelism.
Manticore’s computation language is a subset of ML, a strict functional lan-
guage. The compiler and runtime system add NESL-like support for parallel
arrays and tuples, and a number of scheduling primitives. Similar in spirit to
our approach, only a small kernel is implemented in low-level C; other features
are implemented in external modules, in an intermediate ML-like language of the
compiler. A prototype implementation is planned for the end of 2007, and aims
to be a testbed for future Manticore implementations and language design. As
opposed to ArTCoP’s genericity in coordination support, Manticore explicitly
restricts itself to shared-memory multi-core architectures, and does not support
networked computing, nor location-awareness and monitoring features.

The Famke system [21] is implemented in Clean and explores the suitability
of Clean language features such as dynamic types and uniqueness typing for
O/S implementation. Using these features type-safe mobile processes and con-
currency are implemented. The latter uses a first class continuation approach
and implements scheduling at system level.

Most recently Peng Li et al [13] have presented a micro-kernel (substrate)
based design for the concurrent RTE of GHC, including support for software
transactional memory (STM). This complements our work, which focuses on
control of parallelism, and we intend to combine the design of our interface with
that currently produced for GHC.

3 Design Aims of a Generic Runtime-Environment

3.1 Simplest Kernel

ArTCoP aims to provide support for parallel programming from the conceptual,
language designer perspective. A major goal of its design is to explore how many
of the coordination tasks can be specified at higher levels of abstraction, and to
identify the minimal and most general runtime support for parallel coordination.
Therefore, major parts of the RTE are implemented in a high-level language.
Following a functional paradigm has the advantage that specifications can more
or less be executed directly and that it facilitates theoretical reasoning such as
correctness proofs.
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3.2 Genericity

Our study concentrates on identifying and structuring the general requirements
of parallel coordination, with the only assumption that concurrent threads are
executing a functionally specified computation, explicitly or implicitly coordi-
nated by functional-style coordination abstractions.

The genericity we aim at is two-fold: By providing only very simple actions as
primitive operations, our system, by design, is not tied to particular languages.
We avoid language-specific functionality whenever possible, thus ArTCoP sup-
ports a whole spectrum of coordination languages. Secondly, the coordination
system can be used in combination with different computation engines, and is
not restricted to a particular virtual machine. Furthermore, this coordination
makes minimal assumptions on the communication between processing elements
(PEs). ArTCoP thus concentrates key aspects of parallelism in one place, with-
out being tied to a certain parallelism model.

3.3 Multi-level System Architecture

High-level parallel programming manifests a critical trade-off: providing opera-
tional control of the execution while abstracting over error-prone details. In our
system, we separate these different concerns into different levels of a multi-level
system architecture. As shown in Figure 1, ArTCoP follows the concept of a
micro-kernel, proven useful in the domain of operating system design.

Kernel-RTE

System

Language Definition

Internals: 
Implementation

Library
Application

Fig. 1. Layer view of ArTCoP

Sch
ed

ul
in

g

M
on

ito
rin

g

Com
m

unication

M
em

ory

M
anagem

ent

Fig. 2. Component view of ArTCoP

At Kernel level, the most generic support for parallelism is implemented. The
system offers explicit asynchronous data transfer between nodes, means to start
and stop computations, as well as ways to retrieve machine information at run-
time. Operations at this level are very simple and general. System Modules build
on the kernel to restrict and combine the basic actions to higher-level constructs,
i.e. the constructs of a proper parallel functional language. The runtime support
is necessarily narrowed to a special model at this level. The implemented parallel
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coordination language is nothing else but the interface of the system level mod-
ules. At Library level and Application level, concrete algorithms, or higher-order
functions for common parallel algorithmic patterns (called skeletons [16]) can be
encoded using the implemented language.

Focusing more on functionality and modularity, the kernel can be divided ver-
tically into four interacting components, as shown in Figure 2: Parallel subtasks
are created and sent to other processing elements (PEs) for parallel execution
by the scheduling component, which controls the local executing units. Explicit
communication between several scheduler instances on different PEs is needed
to coordinate and monitor the parallel execution. The memory management
component is responsible for (de-)allocating dynamic data and distributing it
over the available machines, interacting in this task with the communication
component. Explicit message passing is possible, but not mandatory for data
communication, and it is possible to implement a shared address space instead.
In order to decide which PE is idle and suitable for a parallel job, static and
dynamic system information is provided by a monitoring component.

3.4 High Level Scheduler Control

The key issue in efficiently using a wide-area network infrastructure for parallel
computations is to control the parallel subtasks that contribute to the overall
program, and to schedule the most suitable task for execution, depending on the
current machine load and connectivity (whereas efficiently combining them is an
algorithmic issue). Likewise, modern multicore CPUs will often expose uneven
memory access times and synchronisation overhead. Parallel processes must be
placed with minimal data dependencies, optimised for least synchronisation, and
dynamically consider system load and connectivity. ArTCoP aims to be a com-
mon framework for different coordination concepts. Adaptive scheduling support
will thus be specified in the high-level language and not in the runtime system.

4 Implementation of ArTCoP

4.1 Configurable Scheduling Support

We propose a parallel RTE which allows system programmers and language de-
signers to define appropriate scheduling control at the system level in Haskell. In
our parallel system the scheduler is a monadic Haskell function using an internal
scheduler state, and monitors all computations on one machine. Subtasks are
activated and controlled by a separate manager thread, which can take into ac-
count properties of the subtask and static and dynamic machine properties. The
scheduler thread runs concurrently to the controlled computations and relies on
a low-level round-robin scheduler inside the RTE. To specify it, we use the state
monad and features of Concurrent Haskell, combining stateful and I/O-actions
by a monad transformer [12]. We briefly summarise main features and notation
in Fig. 3.
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Monads and Concurrency in Haskell Monads, in one sentence, are Haskell’s way
to hide side-effects of a computation. If a computation is not referentially trans-
parent, e.g. depends on externals (IO) or a system State, it can be mathematically
described as a monadic evaluation. Likewise for side-effecting constructs, those which
modify an external “state”.
The IO monad in Haskell implements user interaction, and also encapsulates the
nondeterministism of Concurrent Haskell: forking and killing threads, yielding
(to the scheduler), and synchronised communication via MVars. The monad State
encapsulates and provides controlled and ordered access to an arbitrary state As a
(contrived) example, we define some functions which modify a simple counter, or
run stateful counting actions.

data Counter = Counter Int Int -- data type Int x Int (and constructor)

-- modifiers, stateful action on Counter
inc,dec,reset :: State Counter ()
-- modify the state by a given function (lambda-notation)
inc = modify (\(Counter n accesses) -> Counter (n+1)(accesses+1))
dec = modify (\(Counter n accesses) -> Counter (n-1)(accesses+1))
reset = do (Counter _ accesses) <- get -- read the state

put (Counter 0 (accesses+1)) -- set sth. as the new state

Do-notation, as shown in reset, is an intuitive notation for composing monadic
actions, and for binding new names to returned values for subsequent use.

Modern Haskell implementations come with a rich set of hierarchically organised
libraries, which provide these general monad operations, and specifics to certain
monads, e.g. for the State monad, to elegantly program and run complex stateful
computations. Exemplified here: evalState runs a stateful computation, sequence
sequences several monadic actions (all return the void type ()).

countTo :: Int -> Counter -- run stateful computation on start state,
countTo m = evalState -- and return final state

(sequence_ (replicate m inc ++ [reset])) -- actions
(Counter 0 0) -- start state

Monad transformers [12] can be used to combine two monads, in our case the IO and
the State monad. IO actions are embedded into the combined monad by liftIO.

Fig. 3. Summary: Monads and Concurrency in Haskell

Parallel tasks in a coordination language implemented by ArTCoP will ap-
pear as a new type of job at library level. Haskell’s type system allows to specify
the respective scheduler for a certain kind of parallelism by overloading instances
of a type class named ScheduleJob. The internal scheduler state type depends
on the concrete job type and forms another type class which provides a start
state and a termination check. A third type class ScheduleMsg relates Jobs and
State to messages between the active units and provides a message processing
function. Table 1 summarises the overloaded functions in the scheduler classes.
A trivial default scheduler schedule is provided (shown in Fig. 4), which only
starts the main computation, repeatedly checks for termination, and returns the
final scheduler state upon termination.
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Table 1. Overview of class funtions (implemented at system level)

type StateIO s a = StateT s IO a type alias combining State and IO monad

class ScheduleState st where
startSt :: st the initial state of the scheduler
killAllThreads :: StateIO st () shutdown function
checkTermination :: StateIO st Bool check state, return whether to stop
checkHaveWork :: StateIO st Bool check state, return whether any local

work available

class ScheduleJob job st | job -> st where
runJobs :: [job] -> IO st run jobs with default start state
schedule :: [job] -> StateIO st st schedule jobs, return final state
forkJob :: job -> StateIO st () fork one job, modify state accordingly

class ScheduleMsg st msg | st -> msg where
processMsgs:: [msg] -> StateIO st Bool process a set of message for the scheduler,

modify state accordingly. Return True im-
mediately if a global stop is requested.

runJobs jobs = evalStateT (schedule jobs) startSt
schedule (job:jobs) = do forkJob job

schedule jobs
schedule [] = do liftIO kYield -- pass control

term <- checkTermination -- check state
if term then get -- return final state

else schedule ([]::[job]) -- repeat

Fig. 4. Default scheduler

Thus, language designers do not deal with runtime system code, but simply
define the scheduling for such jobs at the system level. As a simple example, every
machine could control a subset of the jobs, running one instance of the scheduler.
To model this behaviour, only a few simple operations need to be hard-wired
into the kernel. The basic kernel support can be grouped into scheduler control,
communication, and system information. All primitive operations provided by
the kernel (indicated by the leading k), and their types, are shown in Table 2.
For the example, the Kernel has to provide the number of available PEs (kNoPe),
and must support spawning asynchronous jobs on other PEs (kRFork), namely a
scheduler instance which runs the jobs assigned to the local PE.

4.2 Explicit Communication

If additional jobs are created dynamically, they may be transmitted to a suitable
PE, and received and activated by its scheduling loop. The scheduler instances
may also exchange requests for additional work and receive jobs as their answers.
This model requires communication between the scheduler instances. The kernel
supplies an infrastructure for explicit message passing between any two running
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Table 2. Overview of primitive operations (provided by the kernel)

Functionality at Kernel Level (primitive operations)
kRFork :: PE -> IO() -> IO() start a remote computation
kFork :: IO() -> IO ThreadId start a local thread (Conc. Haskell)
kYield :: IO() pass control to other threads (Conc. Haskell)

kOpenPort:: IO( ChanName’ [a],[a]) open a stream inport at receiver side, return
port handle and placeholder

kSend:: ChanName’ [a] -> a -> IO() basic communication primitive, send an ele-
ment of type a to a receiver (a port handle)

kThisPe,kNoPe :: IO Int get own node’s ID / no. of nodes
kThreadInfo :: ThreadId -> get current thread state

IO ThreadState (Runnable, Blocked, Terminated)
kPEInfo :: Int -> IO InfoVector info about a node in the system (cpu speed,

latency, load, location etc)

threads. It relies on typed stream channels, created from Haskell by kOpenPort,
and managed by the kernel internally. A kOpenPort returns a placeholder for
the stream, and a Haskell port representation to be used by senders for kSend.
Sending data by kSend does not imply any evaluation; data has to be explicitly
evaluated to the desired degree prior to sending.

Stream communication between all scheduler instances, and startup synchro-
nisation, are easy to build on this infrastructure. The scheduler may also receive
messages from the locally running threads (e.g. to generate new jobs), which can
be sent via the same stream. Language designers define suitable message types,
accompanied by an instance declaration which provides the message processing
function in the class ScheduleMsg.

instance ScheduleJob MyJob MySchedulerState where
schedule (j:js) = do forkJob j

mapM_ addToPool js
schedule ([]::[MyJob])

schedule empty = do stop <- do { ms <- receiveMsgs ; processMsgs ms }
term <- checkTermination
if (term || stop)

then do { killAllThreads; get }
else do work <- checkHaveWork

if (not work)
then sendRequest
else liftIO kYield

schedule empty

Fig. 5. Scheduler for a parallel job-pool
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Figure 5 sketches a scheduler for such a language, assuming the existence of a
globally managed job pool. If an instance runs out of work, it will send a request. It
will eventually receive an answer, and the next call to processMsgs will activate the
contained job. This example enables reasoning about appropriate workload distri-
bution and the consequences and side conditions, while the scheduling loop itself
remains small and concise. All essential functionality is moved from the schedul-
ing loop into separate functions, e.g. we leave completely unspecified how jobs are
generated and managed in the job pool, and how a scheduler instance decides that
it needs work (in checkHaveWork). All these aspects can be defined in helper func-
tions, allowing a clear, structured view on the scheduling implemented.

4.3 Monitoring Information

Programmable scheduling support at system level requires knowledge about
static and dynamic system properties at runtime. Our system kernel is geared
towards adaptive techniques developed for GridGum 2, GpH on computational
Grids [1], and provides the necessary information. For location awareness, we
have kNoPe for the total number of PEs in the parallel system, and kThisPe for
the own PE. Another primitive, peInfo :: PE -> IO InfoVector returns a vector
of data about the current system state of one PE. This information is continu-
ously collected by the kernel and held in local tables PEStatic and PEDynamic.

Load information at system level: A list of load information represented in a
Haskell data structure PEInfo is a self-suggesting component of the scheduler
state in many cases. The concrete selection, postprocessing and representation
of system information (provided by the kernel) depends on how the scheduler
at system level wants to use the information. An example of a Haskell type
PEInfo is shown in Fig. 6. It includes selected components of the scheduler state:
the number of threads controlled by the local scheduler, and how many sparks
(potential parallel computations) it holds.

data PEInfo = PE { runQ_length :: Int, noOfSparks :: Int , -- system
clusterId :: Int , clusterPower:: Double,
cpuSpeed :: Int , cpuLoad :: Double, -- kernel
latency :: Double, pe_ip :: Int32,
timestamp:: ClockTime }

startup :: StateIO s ()
startup = do infos <- buildInfos -- startup, returns initial [PEInfo]

let ratios = zipWith (\lat str -> fromIntegral str / lat)
(map latency infos) (map cpuSpeed infos)

myVote = fromJust (findIndex (== maximum ratios) ratios)
votes <- allGather myVote
setMainPE (1 + hasMostVotes votes)

Fig. 6. System level code related to load information
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As exemplified in the figure, the scheduler can do arbitrary computations on
PEInfo structures. For instance, to start the computation on a “strong” machine
with good connectivity, all PEs could elect the main PE by a strength/latency
ratio. Each PE votes for a relatively strong neighbour, where neighbourhood is
a function of latency, varying for different electing PEs. A collective (synchro-
nising) message-passing operation allGather is easily expressed using explicit
communication. Referential transparency guarantees that all PEs will then com-
pute the same value without further synchronisation.

5 Hierarchical Task Management and Adaptive Load
Distribution

5.1 Hierarchical Task Management

We now embed the scheduler of the GUM RTE [19], which implements the
GpH parallel extension of Haskell, into the generic framework presented in the
previous section. In short, GUM provides two concepts going beyond the design
of the simple scheduler in the previous section:

– hierarchical task management, distinguishing between potential parallelism
(“sparks”) and realised parallelism (“threads”); the former can be handled
cheaply and is the main representation for distributing load; the latter, rep-
resenting computation, is more heavy-weight and fixed to a processor;

– adaptive load distribution, which uses information on latency and load of
remote machines when deciding how to distribute work;

We will see that, in this high-level formulation of the scheduler, the code mod-
ifications necessary to realise these two features are fairly simple. Hereafter, we
first describe how to model the hierarchical task management in GUM. These
changes only affect the scheduling component. In tuning load distribution, we
then interact with the monitoring and communication components.

First we specify the machine state in the GUM RTE, consisting of: a) a thread
pool of all threads; these are active threads controlled by the scheduler, each with
its own stack, registers etc; b) a spark pool of all potential parallel tasks; these
are modeled as pointers into the heap; c) monitoring information about load
on other PEs; this information is kept, as a partial picture, in tables on each
processor;

We model this data structure as a triple:

data GumState = GSt Threadpool Sparkpool [PEInfo]
type Sparkpool = [GumJob]
type Threadpool = [ThreadId]

and we make GumState an instance of ScheduleState.
The code for the GUM scheduler is summarised in Figure 7. The arguments to

schedule are jobs to be executed. These jobs are forked using a kernel routine,
and added to the thread pool (forkJob). The case of an empty argument list
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instance ScheduleJob GumJob GumState where
runJobs jobs = evalStateT (initLoad >> (schedule jobs)) startSt
forkJob (GJ job) = do tid <- liftIO (kFork job)

modify (addThread tid)
schedule (j:js) = do { forkJob j ; schedule js }
schedule empty = do

(runThrs, blThrs) <- updateThreadPool -- update and
term <- checkTermination -- (1) check local state
if term

then do { bcast GSTOP ; get } -- finished
else do localWork <- if runThrs > 0 -- (2) local work available?

then return True -- yes: runnable thread
else activateSpark -- no: look for spark

stop <- if localWork
then do reqs <- readMs

processMsgs reqs
else do sendFish -- (3) get remote work

waitWorkAsync
if stop then do { killAllThreads; get } -- finished

else do liftIO kYield -- (4) run some threads
schedule empty

-- essential helper functions:
activateSpark :: StateIO GumState Bool -- tries to find local work
sendFish :: StateIO GumState () -- sends request for remote work
waitWorkAsync :: StateIO GumState Bool -- blocks on receiving messages

updateThreadPool :: StateIO GumState (Int,Int)
updateThreadPool = do

(GSt threads sps lds) <- get
tStates <- liftIO (mapM kThreadInfo threads)
let list = filter (not . isFinished . snd) (zip threads tStates )

blocked = length (filter (isBlocked . snd) list)
runnable = length (filter (isRunnable . snd) list)

put (GSt (map fst list) sps lds)
return (runnable, blocked)

Fig. 7. GUM scheduler

describes how the scheduler controls the machine’s workload. First the sched-
uler checks for termination (1). Then the scheduler checks the thread pool for
runnable tasks, otherwise it tries to activate a local spark (2). If local work has
been found, it will only read and process messages. The handlers for these mes-
sages are called from processMsgs, which belongs to the communication module.
If no local work has been found, a special FISH message is sent to search for
remote work (3). Finally, it yields execution to the micro-kernel, which will exe-
cute the next thread (4) unless a stop message has been received, in which case
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the system will be shut down. The thread pool is modeled as a list of jobs, and
updateThreadPool retrieves the numbers of runnable and blocked jobs.

The above mechanism will work well on closely connected systems but, as
measurements show, it does not scale well on Grid architectures. To address
shortcomings of the above mechanism on wide-area networks, we make modifi-
cations to the thread management component for better load balancing, follow-
ing concepts of the adaptive scheduling mechanism for computational Grids [1].
The key concept in these changes is adaptive load distribution: the behaviour of
the system should adjust to both the static configuration of the system (taking
into account CPU speed etc.) and to dynamic aspects of the execution, such as
the load of the individual processors. One of the main advantages of our high-
level language approach to system-level programming is the ease with which such
changes can be made. The functions of looking for remote work (sendFish and its
counterpart in processMsgs) and picking the next spark (activateSpark) are the
main functions we want to manipulate in tuning scheduling and load balancing
for wide-area networks. Note that by using index-free iterators (such as filter)
we avoid dangers of buffer-overflow. Furthermore, the clear separation of stateful
and purely functional code makes it easier to apply equational reasoning.

5.2 Adaptive Load Distribution Mechanisms

The adaptive load distribution deals with: startup, work locating, and work re-
quest handling, and the key new policies for adaptive load distribution are that
work is only sought from relatively heavily loaded PEs, and preferably from
local cluster resources. Additionally, when a request for work is received from
another cluster, the receiver may add more than one job if the sending PE is
in a “stronger” cluster. The necessary static and dynamic information is either
provided by the kernel, or added and computed at system level, and propagated
by attaching load information to every message between PEs (as explained in
Section 4.3).

Placement of the main computation. During startup synchronisation, a suitable
PE for the main computation is selected, as already exemplified in Section 4.3.
GridGum 2 starts the computation in the ’biggest’ cluster, i.e. the cluster with
the largest sum of CPU speeds over all PEs in the cluster, a policy which is
equally easy to implement.

Work Location Mechanism. The Haskell code in Figure 8 shows how the target
PE for a FISH message is chosen adaptively by choosePE. A ratio between CPU
speed and load (defined as mkR) is computed for all PEs in the system. Ratios
are checked against the local ratio myRatio, preferring nearby PEs (with low
latency, sorted first), to finally target a nearby PE which recently exposed higher
load than the sender. This policy avoids single hot spots in the system, and
decreases the amount of communication through high-latency communication,
which improves overall performance.
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data GumMsg = FISH [PEInfo] Int -- steal work, share PEInfo on the way
| SCHEDULE [PEInfo] GumJob -- give away work (+ share PEInfo)
| GSTOP
| ... other (system) messages...

sendFish:: StateIO GumState ()
sendFish = do infos <- currentPEs -- refresh PE information

me <- liftIO kThisPe
pe <- choosePe me
liftIO (kSend pe ( FISH infos me ))

-- good neighbours for work stealing: low latency, highly loaded
choosePe :: Int -> StateIO GumState (ChanName’ [GumMsg])
choosePe me = do

(GSt _ _ lds ) <- get
let mkR pe = (fromIntegral (cpuSpeed pe)) / (cpuLoad pe)

rList = [ ((i,mkR pe), latency pe) -- compute ’ratio’
| (i,pe) <- zip [1..] lds ] -- keep latency and PE

cands = filter ((< myRatio) . snd) -- check for high load
(map fst -- low latencies first
(sortBy (\a b -> compare (snd a) (snd b)) rList))

myRatio = (snd . fst) (rList!!(me-1))
if null cands then return (port 1) -- default: main PE

else return (port ((fst . head) cands))

Fig. 8. GridGum 2 Work location algorithm

Work Request Handling Mechanism. To minimise high-latency communications
between different clusters, the work request handling mechanism tries to send
multiple sparks in a SCHEDULE message, if the work request has originated
from a cluster with higher relative power (see Figure 9). The relative power of
a cluster is the sum of the speed-load ratios over all cluster elements. If the
originating cluster is weaker or equally strong, the FISH message is served as
usual. In Figure 9, after updating the dynamic information (1), the sender cluster
is compared to the receiver cluster (2), and a bigger amount of sparks is retrieved
and sent if appropriate (3). In this case the RTE temporarily switches from
passive to active load distribution.

6 Conclusions

We have presented the scheduling component in ArTCoP, a hierarchical
runtime-environment (RTE) for parallel extensions of Haskell, which has been
implemented on top of GHC Version 6.6. Using a micro-kernel approach, most
features of the RTE, such as scheduling, are implemented in Haskell, which en-
ables rapid prototyping of easily replaceable modules. Thus we can support both
deep memory and deep process hierarchies. The latter is discussed in detail by
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instance ScheduleMsg GumState GumMsg where
processMsgs ((FISH infos origin):rest) = do processFish infos origin

processMsgs rest
processMsgs ((SCHEDULE ...) :rest) = ...

processFish :: [PEInfo] -> Int -> StateIO GumState ()
processFish infos orig = do

updatePEInfo infos -- update local dynamic information (1)
me <- liftIO kThisPe
if (orig == me) then return () -- my own fish: scheduler will retry
else do

new_infos <- currentPEs -- compare own and sender cluster (2)
let info = new_infos!!(orig-1)

myInfo = new_infos!!(me-1)
amount = if (clusterPower info > clusterPower myInfo)

then noOfSparks myInfo ‘div‘ 2 -- stronger: many
else 1 -- weak or the same: one

sparks <- getSparks amount True -- get a set of sparks (3)
case sparks of
[] -> do target <- choosePe me -- no sparks: forward FISH

liftIO (kSend target (FISH new_infos orig))
some -> liftIO (sequence_ -- send sequence of SCHEDULE messages

(map ((kSend (port orig)).(SCHEDULE new_infos)) some))

Fig. 9. GridGum 2 work request handling algorithm

presenting a scheduler for light-weight tasks. The former is ongoing work in the
form of defining a virtual shared memory abstraction. Considering the daunting
complexity of global networks with intelligent, automatic resource management,
modular support for such deep hierarchies will gain increasing importance. In
particular, we are interested in covering the whole range of parallel architectures,
from multi-core, shared-memory systems to heterogeneous, wide-area networks
such as Grid architectures.

As one general result, we can positively assess the suitability of this class
of languages for system level programming. Realising computation patterns as
index-free iterator functions avoids the danger of buffer-overflows, and the ab-
sence of pointers eliminates a frequent source of errors. In summary, the lan-
guage features that have proven to be most useful are: higher-order functions,
type classes and stateful computation free of side effects (using monads).

Our prototype implementation realises all code segments shown in the paper,
using the GHC RTE as micro-kernel, and Concurrent Haskell as a system-level
programming language. This prototype demonstrates the feasibility of our micro-
kernel approach. The different variants of the scheduler, specialised to several
parallel Haskell implementations, show the flexibility of our approach.
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While we cannot present realistic performance figures of this implementation
yet, we are encouraged by related work reporting satisfying performance for O/S
modules purely written in Haskell [7] and by recent performance results from a
micro-kernel-structured RTE for Concurrent Haskell [13]. We plan to combine
our (parallel) system with this new development by the maintainers of GHC and
to further extend the features of the parallel system.
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Abstract. Most efficient implementations of parallel logic programming
rely on complex low-level machinery which is arguably difficult to imple-
ment and modify. We explore an alternative approach aimed at taming
that complexity by raising core parts of the implementation to the source
language level for the particular case of and-parallelism. We handle a sig-
nificant portion of the parallel implementation at the Prolog level with
the help of a comparatively small number of concurrency-related primi-
tives which take care of lower-level tasks such as locking, thread manage-
ment, stack set management, etc. The approach does not eliminate alto-
gether modifications to the abstract machine, but it does greatly simplify
them and it also facilitates experimenting with different alternatives. We
show how this approach allows implementing both restricted and unre-
stricted (i.e., non fork-join) parallelism. Preliminary experiments show
that the performance sacrificed is reasonable, although granularity con-
trol is required in some cases. Also, we observe that the availability of
unrestricted parallelism contributes to better observed speedups.

Keywords: Parallelism, Virtual Machines, High-level Implementation.

1 Introduction

The wide availability of multicore processors is finally making parallel com-
puters mainstream, thus bringing a renewed interest in languages and tools to
simplify the task of writing parallel programs. The use of declarative paradigms
and, among them, logic programming, is considered an interesting approach for
obtaining increased performance through parallel execution on multicore archi-
tectures, including multicore embedded systems. The high-level nature of these
languages allows coding in a style that is closer to the application and thus
preserves more of the original parallelism for automatic parallelizers to uncover.
Their amenability to semantics-preserving automatic parallelization is also due,
in addition to this high level of abstraction, to their relatively simple semantics,
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and the separation between the control component and the declarative spec-
ification. This makes it possible for the evaluator to execute some operations
in any order (including in parallel), without affecting the meaning of the pro-
gram. In addition, logic variables can be assigned a value at most once, and
thus it is not necessary to check for some types of flow dependencies or to
perform single statement assignment (SSA) transformations, as done with im-
perative languages. At the same time, the presence of dynamic data structures
with “declarative pointers” (logical variables), irregular computations, or com-
plex control makes the parallelization of logic programs a particularly interesting
case that allows tackling complex parallelization-related challenges in a formally
simple and well-understood context [14].

Parallel execution of logic programs has received considerable attention and
very significant progress has been made in the area (see, e.g., [11] and its refer-
ences). Two main forms of parallelism have been exploited: Or-parallelism (Au-
rora [22] and MUSE [2]) parallelizes the execution of different clauses of a
predicate (and their continuations) and is naturally applicable to programs which
perform search. And-parallelism refers to the parallel execution of different goals
in the resolvent. It arises naturally in different kinds of applications (indepen-
dently of whether there is implicit search or not), such as, e.g., divide-and-conquer
algorithms. Systems like &-Prolog [16], DDAS [27] and others have exploited and-
parallelism, while certain combinations of both and- and or-parallelism have been
exploited by e.g. &ACE [24], AKL [20], and Andorra [26].

The basic ideas of the &-Prolog model have been adopted by many other
systems (e.g., &ACE and DDAS). It consists of two components: a paralleliz-
ing compiler which detects the possible runtime dependencies between goals in
clause bodies and annotates the clauses with expressions to decide whether par-
allel execution can be allowed at runtime, and a run-time system that exploits
that parallelism. The run-time system is based on an extension of the original
WAM architecture and instruction set, and was originally implemented, as most
of the other systems mentioned, on shared-memory multiprocessors, although
distributed implementations were also taken into account. We will follow the
same overall architecture and assumptions herein, and concentrate as well on
(modern) shared-memory, multicore processors.

These models and their implementations have been shown very effective at
exploiting parallelism efficiently and obtaining significant speedups. However,
most of them are based on quite complex, low-level machinery which makes
implementing and maintaining these systems inherently hard. In this paper we
explore an alternative approach that is based on raising some components to the
source language level and keeping at low level only selected operations related to,
e.g., thread handling and locking. We expect of course a performance impact,
but hope that this division of concerns will make it possible to more easily
explore variations on the execution schemes. While doing this, another objective
of our proposal is to be able to easily exploit unrestricted and-parallelism, i.e.,
parallelism that is not restricted to fork-join operations.
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2 Classical Approaches to And-Parallelism

In goal-level and-parallelism, a key issue is which goals to select for parallel
execution in order to avoid situations which lead to incorrect execution or slow-
down [19,14]. Not only errors but also significant inefficiency can arise from the
simultaneous execution of computations which depend on each other since, for
example, this may trigger more backtracking than in the sequential case. Thus,
goals are said to be independent if their parallel execution will not perform ad-
ditional search and will not produce incorrect results. Very general notions of
independence have been developed, based on constraint theory [10]. However for
simplicity we discuss only those based on variable sharing.

In Dependent and-parallelism (DAP) goals are executed in parallel even if
they share variables, and the competition to bind them has to be dynam-
ically dealt with using notions such as sequencing bindings from producers
to consumers. Unfortunately this usually implies substantial execution over-
head. In Strict Independent and-parallelism (SIAP) goals are allowed to exe-
cute in parallel only when they do not share variables, which guarantees the
correctness and no-slowdown. Non-strict independent and-parallelism (NSIAP)
is a significant extension, also guaranteeing the no-slowdown property, in which
goals are parallelized even if they share variables, provided that at most one
goal binds a shared variable or the goals agree in the possible bindings for
shared variables. Compile-time tools have been devised and implemented to stat-
ically detect cases where this holds, thus making the runtime machinery lighter
and faster. Undetermined cases can, if deemed advantageous, be checked at
runtime.

Another issue is whether any restrictions are posed on the patterns of paral-
lelization. For example, Restricted and-parallelism (RAP) constrains parallelism
to (nested) fork-join operations. In the &-Prolog implementation of this model
conjunctions which are to be executed in parallel are often marked by replacing
the sequential comma (,/2) with a parallelism operator (&/2).

In this paper we will focus on the implementation of IAP and NSIAP paral-
lelism, as both have practically identical implementation requirements. Our ob-
jective is to exploit both restricted and unrestricted, goal-level and-parallelism.

Once a method has been devised for selecting goals for parallel execution,
an obviously relevant issue is how to actually implement such parallel execu-
tion. One usual implementation approach used in many and-parallel systems
(both for IAP [16,24] and for DAP [27]) is the multi-sequential, marker model
introduced by &-Prolog [13]. In this model parallel goals are executed in dif-
ferent abstract machines which run in parallel. In order to preserve sequential
speed, these abstract machines are extensions of the sequential model, usually
the Warren Abstract Machine (WAM) [29,1], which is the basis of most efficient
sequential implementations. Herein we assume for simplicity that each (P)WAM
has a parallel thread (an “agent”) attached and that we have as many threads as
processors. Thus, we can refer interchangeably to WAMs, agents, or processors.
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p(X, Y, Z) :− q(X), r(X, Y) & s(X, Z).
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p(X,Y,Z) p(X,Y,Z)

Fig. 1. Sketch of data structures layout using the marker model

Within each WAM, sequential fragments appear in contiguous stack sections
exactly as in the sequential execution.1 The new data areas are [16]:

Goal List: A shared area onto which goals that are ready to execute in parallel
are pushed. WAMs can pick up goals from other WAMs’ (or their own)
goal lists. Goal list entries include a pointer to the environment where the
goal was generated and to the code starting the goal execution, plus some
additional control information.

Parcall Frames: They are created for each parallel conjunction and hold the
necessary data for coordinating and synchronizing the parallel execution of
the goals in the parallel conjunction.

Markers: They separate stack sections corresponding to different parallel goals.
When a goal is picked up by an agent, an input marker is pushed onto the
choicepoint stack. Likewise, an end marker is pushed when a goal execution
ends. These are linked to ensure that backtracking will happen following a
logical (i.e., not physical) order.

Figure 1 sketches a possible stack layout for a program such as:
p(X, Y, Z) :- q(X), r(X, Y) & s(X, Z).

with query p(X, Y, Z). We assume that X will be ground after calling q/1.
Different snapshots of the stack configurations are shown from left to right.
Note that in the figure we are intermixing parcall frames and markers in the
same stack. Some actual implementations have chosen to place them in different
parts of the available data areas.2

When the first WAM executes the parallel conjunction r(X, Y) & s(X, Z), it
pushes a parcall frame onto its stack and a goal descriptor onto its goal stack for
the goal s(X, Z) (i.e., a pointer to the WAM code that will construct this call in

1 In some proposals this need not be so: This can actually be relaxed: continuation
markers [28] allow sequential execution to spread over non-contiguous sections. We
will not deal with this issue here.

2 For example, in &ACE parcall frames are pushed onto a separate stack and their
slots are allocated in the heap, to simplify memory management.
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the argument registers and another pointer to the appropriate environment), and
it immediately starts executing r(X, Y). A second WAM, which is looking for
jobs, picks s(X, Z) up, pushes an input marker into its stack (which references
the parcall frame, where data common to all the goals is stored, to be used in
case of internal failure) and constructs and starts executing the goal. An end
marker is pushed upon completion. When the last WAM finishes, it will link
the markers (so as to proceed adequately on backtracking and unwinding), and
execution will proceed with the continuation of p/3.

Classical implementations using the marker model handle the &/2 operator at
the abstract machine level: the compiler issues specific WAM instructions for &/2,
which are executed by a modified WAM implementation. These modifications
are far from trivial, although relatively isolated (e.g., unification instructions are
usually not changed, or changed in a generic, uniform way).

As mentioned in the introduction, one of our objectives is to explore an al-
ternative implementation approach based on raising components to the source
language level and keeping at low level only selected operations. Also, we would
like to avoid modifications to the low-level compiler. At the same time, we want
to be able to easily exploit unrestricted and-parallelism, i.e., parallelism that is
not restricted to fork-join operations. These two objectives are actually related
in our approach because, as we will see in the following section, we will start by
decomposing the parallelism operators into lower-level components which will
also allow supporting unrestricted and-parallelism.

3 Decomposing And-Parallelism

It has already been reported [6,5] that it is possible to construct the and-parallel
operator &/2 using more basic yet meaningful components. In particular, it is
possible to implement the semantics of &/2 using two end-user operators, &>/2
and <&/1, defined as follows:3

– G &> H schedules goal G for parallel execution and continues with the
code after G &> H. H is a handler which contains (or points to) the state of
goal G.

– H <& waits for the goal associated with H (G, in the previous item) to
finish. At that point all bindings G could possibly generate are ready, since G
has reached a solution. Assuming goal independence between G and the calls
performed while G was being executed, no binding conflicts will arise.

G &> H ideally takes a negligible amount of time to execute, although the pre-
cise moment in which G actually starts depends on the availability of resources
(primarily, free agents/processors). On the other hand, H <& suspends until the
associated goal finitely fails or returns an answer. It is interesting to note that

3 We concentrate on forward execution here. See Section 4.5 for backtracking behavior.
Also, although exception handling is beyond our current scope, exceptions uncaught
by a parallel goal surface at the corresponding <&/1, where they can be captured.
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the approach shares some similarities with the concept of futures in parallel func-
tional languages. A future is meant to hold the return value of a function so that
a consumer can wait for its complete evaluation. However, the notions of “return
value” and “complete evaluation” do not make sense when logic variables are
present. Instead, H <& waits for the moment when the producer goal has com-
pleted execution, and the “received values” (a tuple, really) will be whatever
(possibly partial) instantiations have been produced by such goal.

With the previous definitions, the &/2 operator can be expressed as:
A & B :- A &> H, call(B), H <&.

(Actual implementations will of course expand A & B at compile time using the
above definition in order not to pay the price of an additional call and the meta-
call. The same can be applied to &> and <&.) However, these two new operators
can additionally be used to exploit more and-parallelism than is possible with
&/2 alone [9]. We will just provide some intuition by means of a simple example
(an experimental performance evaluation is included in Section 5.)4

Consider predicate p/3 defined as follows:

p(X,Y,Z) :- a(X,Z), b(X), c(Y), d(Y,Z).

whose (strict) dependencies (assuming that X,Y,Z are free and do not share on
entry) are shown in Figure 2. A classical fork-join parallelization is shown in Fig-
ure 3, while an alternative (non fork-join) parallelization using the new operators
is shown in Figure 4. We assume here that solution order is not relevant.

b(X)

c(Y) d(Y,Z)

a(X,Z)

Fig. 2. Dep. graph for p/3

It is obvious that it is always possible to paral-
lelize programs using &>/2 and <&/1 and obtain
the same parallelism as with &/2 (since &/2 can be
defined in terms of &>/2 and <&/1). The converse
is not true. Furthermore, there are cases (as in Fig-
ure 4) where the parallelizations allowed by &>/2
and <&/1 can be expected to result in shorter ex-
ecution times, for certain goal execution times [9].
In our example, the annotation in Figure 3 misses
the possible parallelism between the subgoals c/1

and b/1, which the code in Figure 4 allows: c/1 is scheduled at the beginning of
the execution, and it is waited for in Hc <&, just after b/1 has been scheduled
for parallel execution.

In addition to &>/2 and <&/1, we propose specialized versions in order to
obtain additional functionality or more efficiency. In particular, &!>/2 and <&!/1
are intended to be equivalent to &>/2 and <&/1, respectively, but only for single-
solution, non-failing goals, where there is no need to anticipate backtracking
during forward execution. These primitives allow the parallelizer to flag goals
that analysis has detected to be deterministic and non-failing (see [18]), and this
can result in important simplifications in the implementation.

4 Note that the &>/2 and <&/1 operators do not replace the fork-join operator &/2 at
the language level due to its conciseness in cases in which no extra parallelism can
be exploited with &>/2 and <&/1.
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p(X, Y, Z):-
a(X, Z) & c(Y),
b(X) & d(Y, Z).

Fig. 3. Nested fork-join annotation

p(X, Y, Z) :-
c(Y) &> Hc,
a(X, Z),
b(X) &> Hb,
Hc <&,
d(Y, Z),
Hb <&.

Fig. 4. Using the new operators

4 Sketch of a Shared Memory Implementation

Our proposed implementation divides responsibilities among several layers. User-
level parallelism and concurrency primitives intended for the programmer and
parallelizers are at the top and written in Prolog. Below, goal publishing, search-
ing for available goals, and goal scheduling are written at the Prolog level, relying
on some low-level support primitives for, e.g., locking or low-level goal manage-
ment, with a Prolog interface but written in C.

In our current implementation for shared-memory multiprocessors, and sim-
ilarly to [16], agents wait for work to be available, and execute it if so. Every
agent is created as a thread attached to an (extended) WAM stack set. Sequen-
tial execution proceeds as usual, and coordination with the rest of the agents is
performed by means of shared data structures. Agents make new work available
to other agents (and also to itself) through a goal list which is associated with
every stack set and which can be consulted by all the agents. This is an instance
of the general class of work-stealing scheduling algorithms, which date back at
least to Burton and Sleep’s [4] research on parallel execution of functional pro-
grams and Halstead’s [12] implementation of Multilisp, and the original &-Prolog
abstract machine [13,16], for logic programs.

In the following subsections we will introduce the library with the (determinis-
tic) low-level parallelism primitives and we will present the design (and a sketch
of the actual code, simplified for space reasons) of the main source-level algo-
rithms used to run deterministic, non-failing goals in parallel. We will conclude
with some comments on the execution of nondeterministic goals in parallel.

4.1 Low-Level Parallelism Primitives

The low-level layer has been implemented as a Ciao library (“apll”) written in
C which provides basic mechanisms to start threads, wait for their completion,
push goals, search for goals, access to O.S. locks, etc. Most of these primitives
need to refer to an explicit goal and need to use some information related to its
state (whether it has been taken, finished, etc.). Hence the need to pass them a
Handler data structure which abstracts information related to the goal at hand.

The current (simplified) list of primitives follows. Note that this is not in-
tended to be a general-purpose concurrency library (such as those available in
Ciao and other Prolog systems —–in fact, very little of what should appear in
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such a generic library is here), but a list of primitives suitable for efficiently
implementing at a higher-level different approaches to exploiting independent
and-parallelism. We are, for clarity, adding explicitly the library qualification.

apll:push goal(+Goal,+Det,-Handler) atomically creates a unique handler (an
opaque structure) associated to Goal and publishes Goal in the goal list for
any agent to pick it up. Handler will henceforth be used in any operation
related to Goal. Det describes whether Goal is deterministic or not.

apll:find goal(-Handler) searches for a goal published in some goal list. If one
exists, Handler is unified with a handler for it; the call fails otherwise, and
it will succeed at most once per call. Goal lists are accessed atomically so as
to avoid races when updating them.5

apll:goal available(+Handler) succeeds if the goal associated to Handler has
not been picked up yet, and fails otherwise.

apll:retrieve goal(+Handler,-Goal) unifies Goal and the goal initially associ-
ated to Handler.

apll:goal finished(+Handler) succeeds if the execution state of the goal associ-
ated to Handler is finished, and fails otherwise.

apll:set goal finished(+Handler) sets to finished the execution state of the goal
associated to Handler.

apll:waiting(+Handler) succeeds when the execution state of the agent which
published the goal associated to Handler is suspended and fails otherwise.

Additionally, a set of locking primitives is provided to perform synchronization
and to obtain mutual exclusion at the Prolog level. Agents are synchronized by
using two different locks:6 one which is used to ensure mutual exclusion when
dealing with shared data structures (i.e., when adding new goals to the list),
and another one which is used to synchronize the agent waking up when <&/1 is
waiting for either more work to be available, or the execution of a goal picked
up by some other agent to finish. Both can be accessed with specific (* self)
predicates to specify the ones belonging to the calling agent. Otherwise, they are
accessed through a goal Handler, and then the locks accessed are those belonging
to the agent which created the goal that Handler refers to (i.e., its creator).

apll:suspend suspends the execution of the calling thread.
apll:release(+Handler) releases the agent which created Handler (which could

have suspended itself with the above described predicate).
apll:release some suspended thread selects one out of any suspended threads

and resumes its execution.
apll:enter mutex(+Handler) attempts to enter mutual exclusion by using the

lock of the agent associated to Handler, in order to access its shared vari-
ables.

apll:enter mutex self same as above, with the agent’s own mutex.

5 Different versions exist of this primitive which can be used while implementing dif-
ferent goal scheduling strategies.

6 Note that both locks are local to the thread, i.e., they are not global locks.
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apll:exit mutex(+Handler) signals the lock in the realm of the agent associated
to Handler in order to exit mutual exclusion.

apll:exit mutex self same as above with the calling thread.

The following sections will clarify how these primitives are intended to be used.

4.2 High-Level Goal Publishing

Based on the previous low-level primitives, we will develop the user-level ones.
We will describe a particular strategy (which is the one used in our experiments)
in which idle agents are suspended and resumed depending on the availability
of work, instead of continuously looking for tasks to perform.

Goal &!> Handler :-
apll:push_goal(Goal,det,Handler),
apll:release_some_suspended_thread.

Fig. 5. Publishing a (deterministic) parallel goal

A call to &!>/2 (or &>/2 if
the goal is nondeterministic)
publishes the goal in the goal
list managed by the agent,
which makes it available to
other agents. Figure 5 shows
the (simplified) Prolog code
implementing this functionality (again, the code shown can be expanded in line
but is shown as a meta-call for clarity). First, a pointer to the goal generated is
inserted in the goal list, and then a signal is broadcast to let suspended agents
know that new work is available. As we will see later, the agent receiving the
signal will resume its execution, pick up the new parallel goal, and start its
execution.

After executing Goal &!> H, H will hold the state of Goal, which can be
inspected both by the thread which publishes Goal and by any thread which picks
up Goal to execute it. Therefore, in some sense, H takes the role of the parcall
frame in [16], but it goes to the heap instead of being placed in the environment.
Threads can communicate and synchronize through H in order to consult and
update the state of Goal. This is especially important when executing H <&!.

4.3 Performing Goal Joins

Figure 6 provides code implementing <&!/1 (the deterministic version of <&/1).
First, the thread needs to check whether the goal has been picked up by some
other agent, using apll:goal available/1. If this is not the case, then the pub-
lishing agent executes it locally, and <&!/1 succeeds trivially. Note that mutual
exclusion is requested with apll:enter mutex self/0 in order to avoid incor-
rect concurrent accesses to (shared) data structures related to goal management.

If the goal has been picked up by another agent and its execution has finished,
then <&!/1 will automatically succeed (note that mutual exclusion is entered
again in order to safely check the goal status). In that case, the bindings made
during goal execution are, naturally, available, since we are dealing with a shared-
memory implementation. If the goal execution has not finished yet then the
thread will search for more work in order to keep itself busy, and it will only
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H <&! :-
apll:enter_mutex_self,
(

apll:goal_available(H) ->
apll:retrieve_goal(H,Goal),
apll:exit_mutex_self,
call(Goal)

;
apll:exit_mutex_self,
perform_other_work(H)

).

perform_other_work(H) :-
apll:enter_mutex_self,
(

apll:goal_finished(H) ->
apll:exit_mutex_self

;
find_goal_and_execute,
perform_other_work(H)

).

Fig. 6. Goal join with continuation

find_goal_and_execute :-
apll:find_goal(Handler),
apll:exit_mutex_self,
apll:retrieve_goal(Handler,Goal),
call(Goal),
apll:enter_mutex(Handler),
apll:set_goal_finished(Handler),
(

apll:waiting(Handler) ->
apll:release(Handler)

;
true

),
apll:exit_mutex(Handler).

find_goal_and_execute :-
apll:exit_mutex_self,
apll:suspend.

Fig. 7. Finding a parallel goal and executing it

create_agents(0) :- !.
create_agents(N) :-

N > 0,
conc:start_thread(agent),
N1 is N - 1,
create_agents(N1).

agent :-
apll:enter_mutex_self,
find_goal_and_execute,
agent.

Fig. 8. Creating parallel agents

suspend if there is definitely no work to perform at the moment. This ensures
that overall efficiency is kept at a reasonable level, as we will see in Section 5.
We want to note, again, that this process is protected from races when accessing
shared variables by using locks for mutual exclusion and synchronization.

Figure 7 shows the code for find goal and execute/0, which searches for
work in the system. If a goal is found, the executing thread will retrieve and ex-
ecute it, ensure mutual exclusion on the publishing agent data structures (where
the handler associated to the goal resides), mark the goal execution as finished
and resume the execution of the publishing agent, if it was suspended. In that
case, the publishing agent (suspended in eng suspend/0) will check which sit-
uation applies after resumption and act accordingly after recursively invoking
the predicate perform other work/1. If no goal was available for execution,
find goal and execute/0 will suspend waiting for more work to be created.
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4.4 Agent Creation

Agents are generated using the create agents/1 predicate (Figure 8) which
launches a number of O.S. threads using the start thread/0 predicate imported
from a generic concurrency library (thus the conc prefix used, again, for clarity).
Each of these threads executes the agent/0 code, which continuously either
executes work in the system and looks for more work when finished, or sleeps
when there is nothing to execute. We assume for simplicity that agent creation is
performed at system startup or just before starting a parallel execution. Higher-
level predicates are however provided in order to manage threads in a more
flexible way. For instance, ensure agents/1 makes sure that a given number of
executing agents is available. In fact, agents can be created lazily, and added
or deleted dynamically as needed, depending on machine load. However, this
interesting issue of thread throttling is beyond the scope of this paper.

4.5 Towards Non-determinism

For simplicity we have left out of the discussion and also of the code the support
for backtracking, which clearly complicates things. We have made significant
progress in our implementation towards supporting backtracking so that, for ex-
ample, the failure-driven top level is used unchanged and memory is recovered
orderly at the end of parallel executions. However, completing the implementa-
tion of backtracking is still the matter of current work.

There are interesting issues both at the design level and also at the imple-
mentation level. An interesting point at the design level is for example deciding
whether backtracking happens when going over &>/2 or <&/1 during backward
execution. Previous work [6,5] leaned towards the latter, which is also probably
easier to implement; however, there are also reasons to believe that the former
may in the end be more appropriate. For example, in parallelized loops such as:

p([X|Xs]):- b(X) &> Hb, p(Xs), Hb <&.

spawning b(X) and keeping the recursion local and not the other way around
is important because task creation is the real bottleneck. However, the solution
order is not preserved if backtracking occurs at <&/1, but it is if backtracking
occurs at &>/2. Note that in such loops the loss of last call optimization (LCO)
is only of relative importance, since if there are several solutions to either b/1 or
p/1, LCO could not be applied anyway, and a simple program transformation
(to store handlers in an accumulating parameter) can recover it if necessary.

At the implementation level, avoiding the “trapped goal” and “garbage slots”
problems [17] is an issue to solve. One approach under consideration to this end
is to move trapped stack segments (sequential sections of execution) to the top
of the stack set in case backtracking is needed from a trapped section. Sections
which become empty can be later compacted to avoid garbage slots. In order to
express this at the Prolog level, we foresee the need of additional primitives, still
the subject of further work, to manage stack segments as first-class citizens.

Another fundamental idea in the approach that we are exploring is not to
create markers explicitly, but use instead, for the same purpose, standard choice
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Table 1. Benchmarks for restricted and unrestricted IAP

AIAKL Simplified AKL abstract in-
terpreter.

Ann Annotator for and-paralle-
lism.

Boyer Simplified version of the
Boyer-Moore theorem pro-
ver.

Deriv Symbolic derivation.
FFT Fast Fourier transform.
Fibonacci Doubly recursive Fibonacci.
FibFun Functional Fibonacci.

Hamming Calculates Hamming num-
bers.

Hanoi Solves Hanoi puzzle.
MergeSort Sorts a 10000 element list.
MMatrix Multiplies two 50×50 matri-

ces.
Palindrome Generates a palindrome of

214 elements.
QuickSort Sorts a 10000 element list.
Takeuchi Computes Takeuchi.
WMS2 A work scheduling program.

points built by creating alternatives (using alternative clauses) directly in the
control code (in Prolog) that implements backtracking.

5 Experimental Results

We now present performance results obtained after executing a selection of well-
known benchmarks with independent and-parallelism. As mentioned before, we
have implemented the proposed approach in Ciao [3], an efficient system designed
with extension capabilities in mind. All results were obtained by averaging ten
runs on a state-of-the-art multiprocessor, a Sun Fire T2000 with 8 cores and 8
Gb of memory. While each core is capable of running 4 threads in parallel, and in
theory up to 32 threads could run simultaneously on this machine, we only show
speedups up to 8 agents. Our experiments (see the later comments related to
Figure 10) show that speedups with more than 8 threads stop being linear even
for completely independent computations (i.e., 32 totally independent threads
do not really speed up as if 32 independent processors were available), as threads
in the same core compete for shared resources such as integer pipelines. Thus,
beyond 8 agents, it is hard to know whether reduced speedups are due to our
parallelization and implementation or to limitations of the machine.

Although most of the benchmarks we use are quite well-known, Table 1 pro-
vides a brief description. Speedups appear in Tables 2 (which contains only
programs parallelized using restricted [N]SIAP, as in Figure 3) and 3 (which ad-
ditionally contains unrestricted IAP programs, as in Figure 4). The speedups are
with respect to the sequential speed on one processor of the original, unparal-
lelized benchmark. Therefore, the columns tagged 1 correspond to the slowdown
coming from executing a parallel program in a single processor. Benchmarks with
a GC suffix were executed with granularity control with a suitably chosen thresh-
old and benchmarks with a DL suffix use difference lists and require NSIAP for
parallelization. All the benchmarks in the tables were automatically parallelized
using CiaoPP [18] and the annotation algorithms described in [9] (TakeuchiGC
needed however some unfolding in order to uncover and allow exploiting more
parallelism using the new operators, as discussed later).
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Table 2. Speedups for restricted IAP

Benchmark
Number of processors

Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67

Ann 1.00 0.98 1.86 2.65 3.37 4.07 4.65 5.22 5.90

Boyer 1.00 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64

BoyerGC 1.00 0.90 1.74 2.57 3.15 3.85 4.39 4.78 5.20

Deriv 1.00 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75

DerivGC 1.00 0.91 1.63 2.37 3.05 3.69 4.21 4.79 5.39

FFT 1.00 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70

FFTGC 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Fibonacci 1.00 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50

FibonacciGC 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Hanoi 1.00 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 1.00 0.47 0.98 1.51 2.19 2.62 3.06 3.54 3.95

HanoiGC 1.00 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67

MergeSort 1.00 0.79 1.47 2.12 2.71 3.01 3.30 3.56 3.71

MergeSortGC 1.00 0.83 1.52 2.23 2.79 3.10 3.43 3.67 3.95

MMatrix 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 1.00 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23

PalindromeGC 1.00 0.94 1.75 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 1.00 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55

QuickSortDL 1.00 0.71 1.36 1.95 2.26 2.76 2.96 3.18 3.32

QuickSortGC 1.00 0.94 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 1.00 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72

TakeuchiGC 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

It can be deduced from the results that in several benchmarks the natural
parallelizations produce small granularity. This, understandably, impacts our
implementation since a sizable part of it is written in Prolog, which implies
additional overhead in the preparation and execution of parallel goals. Thus,
it is not possible to perform a fair comparison of the speedups obtained with
respect to previous (lower-level) and-parallel systems. The overhead implied by
the proposed approach produces comparatively low performance on a single pro-
cessor and in some cases with very fine granularity, such as Boyer and Takeuchi,
speedups are shallow (below 2×) even over 8 processors. In these examples execu-
tion is dominated by the sequential code of the scheduler and agent management
in Prolog. However, even in these cases, setting a granularity threshold based on
a measure of the input argument size [21] much better results can be obtained.
Figure 11 depicts graphically the impact of granularity control in some bench-
marks. Annotating the parallelized program to take into account granularity
measures based on the size of the input arguments, and finding out the optimal
threshold for a given platform, can be done automatically in many cases [21,23].

Table 3 shows a different comparison: some programs have traditionally been
executed under IAP using the restricted (nested fork-join) annotations, and can
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Table 3. Speedups for both restricted and unrestricted IAP

Benchmark Parallelism
Number of processors

Seq. 1 2 3 4 5 6 7 8

FFTGC
Restricted 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Unrestricted 1.00 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

FibFunGC
Restricted 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unrestricted 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

Hamming
Restricted 1.00 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Unrestricted 1.00 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

TakeuchiGC
Restricted 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Unrestricted 1.00 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

WMS2
Restricted 1.00 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Unrestricted 1.00 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10
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be annotated for parallelism using the more flexible &>/2 and <&/1 operators,
as in Figures 3 and 4. In some cases those programs obtain little additional
speedup, but, interestingly, in other cases the gains are very relevant. An inter-
esting example is the Takeuchi function which underwent a manual (but me-
chanical) transformation involving an unfolding step, which produced a clause
where non-nested fork-join [15] can be taken advantage of, producing a much
better speedup. This can be clearly seen in Figure 9. Note that the speedup
curve did not seem to stabilize even when the 8 processor mark was reached.

The FibFun benchmark is also an interesting case. A definition of Fibonacci
was written in Ciao using the functional package [8] which implements a rich func-
tional syntactic layer via compilation to the logic programming kernel. The auto-
matic translation into predicates does not produce however the same Fibonacci
program that programmers usually write (input parameters are calculated right
before making the recursive calls), and it turns out that it cannot be directly par-
allelized using existing order-preserving annotators and restricted IAP. On the
other hand it can be automatically parallelized (including the translation from
functional to logic programming notation) using the unrestricted operators.
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Fig. 11. Speedups for some selected benchmarks with and without granularity control

Despite our observation that the T2000 cannot produce linear speedups be-
yond 8 processors even for independent computations, we wanted to try at least
a Prolog example using as many threads as natively available in the machine,
and compare its speedup with that of a C program generating completely in-
dependent computations. Such a C program provides us with a practical upper
bound on the attainable speedups. The results are depicted in Figure 10 which
shows both the ideally parallel C program and a parallelized Fibonacci running
on our implementation. Interestingly, the speedup obtained is only marginally
worse than the best possible one. In both curves it is possible to observe a
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sawtooth shape, presumably caused by tasks filling in a row of units in all cores
and starting to use up additional thread units in other cores, which happens at
1×8, 2×8, and 3×8 threads.

6 Conclusions

We have presented a new implementation approach for exploiting and-parallelism
in logic programs with the objectives of simpler machinery and more flexibility.
The approach is based on raising the implementation of some components to the
source language level by using more basic high-level primitives than the fork-join
operator and keeping only some relatively simple operations at a lower level. Our
preliminary experimental results show that reasonable speedups are achievable
with this approach, although the additional overhead, at least in the current
implementation, makes it necessary to use granularity control in many cases in
order to obtain good results. In addition, recent compilation technology and im-
plementation advances [7,25] provide hope that it will eventually be possible to
recover a significant part of the efficiency lost due to the level at which parallel
execution is expressed. Finally, we have observed that the availability of unre-
stricted parallelism contributes in practice to better observed speedups. We are
currently working on improving the implementation both in terms of efficiency
and of improved support for backtracking. We have also developed simultane-
ously specific parallelizers for this approach, which can take advantage of the
unrestricted nature of the parallelism which it can support [9].

Acknowledgments. This work was funded in part by the IST program of the
European Commission, FP6 FET project IST-15905 MOBIUS, by the Ministry of
Education and Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS
and by the Madrid Regional Government CAM project S-0505/TIC/0407
PROMESAS. Manuel Hermenegildo and Amadeo Casas were also funded in part
by the Prince of Asturias Chair in Information Science and Technology at UNM.

References

1. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press,
Cambridge (1991)

2. Ali, K.A.M., Karlsson, R.: The Muse Or-Parallel Prolog Model and its Perfor-
mance. In: 1990 North American Conference on Logic Programming, pp. 757–776.
MIT Press, Cambridge (1990)

3. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla,
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Abstract. Master-worker systems are a well-known and often applica-
ble scheme for the parallel evaluation of a pool of tasks, a work pool. The
system consists of a master process managing a set of worker processes.
After an initial phase with a fixed amount of tasks for each worker, fur-
ther tasks are distributed in reply to results sent back by the workers. As
this setup quickly leads to a bottleneck in the master process, the paper
investigates techniques for hierarchically nesting the basic master-worker
scheme. We present implementations of hierarchical master-worker skele-
tons, and how to automatically calculate parameters of the nested skele-
ton for good performance.

Nesting master-worker systems is nontrivial especially in cases where
newtasksaredynamically created fromprevious results (typically breadth-
ordepth-firsttreesearchalgorithms).Wediscusshowtohandledynamically
growing pools in a hierarchy and present a declarative implementation for
nested master-worker systems with dynamic task creation.

The skeletons are experimentally evaluated with two typical test pro-
grams. We analyse their runtime behaviour and the effects of different
hierarchies on runtimes via trace visualisations.

1 Introduction

Parallelising an algorithm implemented as a functional program starts by identi-
fying a set of largely independent evaluations. These tasks have to be assigned to
nodes of a parallel computer, to gain high speedups by simultaneous evaluation.
If the tasks are regular and their number is statically known, mapping them
to the parallel nodes is trivial. The everyday situation, however, faces us with
irregular tasks of varying and unknown complexity. The static task distribution
should be replaced by a dynamic one.

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Fig. 1. Master-worker scheme

The master-worker scheme is a parallel skele-
ton for a task pool with dynamic task distri-
bution. A master process distributes tasks to
a set of subordinate worker processes, and col-
lects the results. Many-to-one communication
enables the master to evenly supply a new task
to each worker every time it sends back a re-
sult. Worker idle-time in the period between
sending a result and receiving a new task can
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be avoided by pre-assigning a configurable amount (prefetch) of tasks to all
workers. The prefetch parameter determines the behaviour of the skeleton, be-
tween a completely dynamic (prefetch 1) and a completely static distribution
(prefetch ≥ no. of tasks

no. of workers ).
So far, we have assumed a statically fixed task pool, which, in essence, results

in a parallelised map function with dynamic assignment. Again, more realistic
are dynamic settings where results might imply additional new tasks at run-
time. This changes the scene completely: Tasks are not only irregular and of
unknown number, but also carry an unknown ’task productivity’. This weakens
the influence of the prefetch parameter.

A master-worker scheme essentially relies on a double functionality of the
master process: it is responsible for collecting (possibly large) results, and it emits
new tasks to idle workers. When a large number of workers is used, the single
master process quickly becomes a bottleneck which paralyses the whole scheme.
On the other hand, using more coarse-grained work requests, and consequently
tasks, would restrict the dynamic adaption to the workload. As a remedy, we
conceptually investigate techniques to nest the basic master-worker skeleton in
a master-worker hierarchy. The master process at the top distributes tasks to
several lower submasters, each of which manages a (smaller) worker set of its
own, or possibly another level of submasters in a deeper hierarchy.

The hierarchical master-worker system as a whole is tree-shaped, with worker
processes at the leaves and submasters as the inner nodes. The optimal hierarchy
layout depends on the nature of the tasks, and on the number and performance of
processing elements (PEs). The basic skeleton mechanism of tasks and requests
remains the same at all tree levels, but at higher levels of the tree, skeleton
parameters and distribution policies have to be adjusted to achieve good perfor-
mance. In the case of a dynamic task pool, another question we investigate is
whether submasters at one level should forward new tasks to upper levels, or keep
them for their own worker set. A simple hierarchical scheme for master-worker
systems has been presented in [7]. While we concentrate on the hierarchies, the
focus of [7] has been a modified master process, which enables a transformation
of the dynamically evolving task queue considering global information.

The paper is organised as follows: Section 2 presents non-hierarchical and
hierarchical master-worker skeletons for a static task pool; the essential mecha-
nism for nesting the basic skeleton, and how to automatically compute suitable
skeleton parameters. In Section 3, we extend the skeleton for the case of dy-
namic task sets, and show the more complex nesting mechanisms needed for
this skeleton variant. Each section includes experiments with an example ap-
plication, discussing the behaviour for different hierarchy layouts and prefetch
values. Section 4 discusses related work, Section 5 concludes.

2 Static Task Pools

In this section, we consider master-worker systems with a static task pool, i.e. no
tasks are created during processing. The task pool is a list of tasks which can also
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mw :: (Trans t, Trans r) => Int -> Int -> (t -> r) -> [t] -> [r]
mw n prefetch wf tasks = ress
where (reqs, ress) = (unzip . merge) (spawn workers inputs)

-- workers :: [Process [t] [(Int,r)]]
workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate prefetch [0..n-1])

-- task distribution according to worker requests
distribute :: Int -> [t] -> [Int] -> [[t]]
distribute np tasks reqs = [taskList reqs tasks n | n<-[0..np-1]]
where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe
taskList _ _ _ = []

Fig. 2. Eden master-worker skeleton with a static task pool

be provided as a stream, the total number of tasks does not have to be known in
advance. System termination depends, however, on closing this task stream.

2.1 The Basic Master-Worker Skeleton

We perform our experiments in the parallel Haskell extension Eden [4] which
allows to specify many different variants of the general master-worker schemes in
an elegant and concise way. Figure 2 shows the Eden implementation of the basic
master-worker skeleton. The task pool tasks is distributed to n worker processes,
which, for each task, apply the worker function wf and return a pair consisting of
the worker number and the result of the task evaluation to the master process,
i.e. the process evaluating mw. The worker numbers are interpreted as requests for
new tasks. The master uses a function distribute to send tasks to the workers
according to the (n*prefetch) requests initially created and the ones received
from the workers.1 Care must be taken that distribute is incremental, i.e. it
can deliver partial result lists without the need to evaluate requests not yet
available. The skeleton uses the following Eden functions:

– process ::(Trans a, Trans b) => (a -> b) -> Process a b

wraps a function into a process abstraction which shifts function evaluation
to a remote processing element. The Trans context ensures the existence of
internal communication functions.

– spawn :: [Process a b] -> [a] -> [b]

starts processes on remote machines eagerly.
– merge :: [[r]] -> [r]

nondeterministically merges a set of streams into a single one.
1 Because the input for Eden processes is evaluated by concurrent threads in the gener-

ator process, separate threads for each worker evaluate the local function tasklist.
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An additional merge phase would be necessary to restore the initial task order
for the results. This can be accomplished by adding tags to the task list, and
passing results through an additional function mergeByTags (not shown) which
merges the result streams from all workers (each sorted by tags, thus less complex
than a proper sorting algorithm). We will not go into further details.

In the following, we will investigate the properties and implementation is-
sues of hierarchical master-worker skeletons. As proclaimed in the introduction,
this should enable us to overcome the bottleneck in the master when too many
workers must be served.

2.2 Nesting the Basic Master-Worker Skeleton

To simplify the nesting, the basic skeleton mw is modified in such a way that it
has the same type as its worker function. We therefore assume a worker function
wf :: [t] -> [r], and replace the expression (map wf) in the worker process
definition with wf. This leads to a slightly modified version of mw, denoted by
mw’ in the following. An elegant nesting scheme (taken from [7]) is defined in
Figure 3. The parameters specify the branching degrees and prefetch values
per level, starting with the root parameters. The length of the parameter lists
determines the depth of the generated hierarchical system.

mwNested :: (Trans t, Trans r) =>
[Int] -> [Int] -> -- branching degrees/prefetches per level
([t] -> [r]) -> -- worker function
[t] -> [r] -- tasks, results

mwNested ns pfs wf = foldr fld wf (zip ns pfs)
where fld :: (Trans t, Trans r) =>

(Int,Int) -> ([t] -> [r]) -> ([t] -> [r])
fld (n,pf) wf = mw’ n pf wf

Fig. 3. Static nesting with equal level-wise branching

The nesting is achieved by folding the zipped branching degree and prefetches
lists, using the proper worker function, of type [t] -> [r], as the starting value.
The folding function fld corresponds to the mw’ skeleton applied to the branching
degree and prefetch value parameters taken from the folded list and the worker
function produced by folding up to this point.

The parameters in the nesting scheme above allow to freely define tree shape
and prefetch values for all levels. As the mw skeleton assumes the same worker
function for all workers in a group, it generates a regular hierarchy, one cannot
define different branching or prefetch within the same level. It is possible to
define a version of the static nestable work pool which is even more flexible (not
considered here), yet more simple skeleton interfaces are desirable, to provide
access to the hierarchical master-worker at different levels of abstraction. We can
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define an interface that automatically creates a regular hierarchy with reasonable
parameters for a given number of available processing elements.

mwNest :: (Trans t, Trans r) =>
Int -> Int -> Int -> Int -> (t -> r) -> [t] -> [r]

mwNest depth level1 np basepf f tasks
= let nesting = mkNesting np depth level1
in mwNested nesting (mkPFs basepf nesting) (map f) tasks

In this version, the parameter lists are computed from a given base prefetch,
nesting depth and top-level branching degree by auxiliary functions. These fewer
parameters provide simple control of the tree size and shape, and prefetch ad-
justed to the task granularity.

Auxiliary function mkNesting computes a regular nesting scheme from the top-
level branching degree level1 and the nesting depth, which appropriately maps to
np, the number of processing elements (PEs) to use. It calculates the branching
list for a hierarchy, where all intermediate levels are binary. The number of
workers per group depends on the number of remaining PEs, rounded up to
make sure that all PEs are used. Please note that this possibly places several
worker processes on the same PE. Workers sharing the same PE will appear as
slow workers in the system, but this should be compensated by the dynamic task
distribution unless the prefetch is too high.

ld =

⎡
⎢⎢⎢⎢⎢⎢⎢

np −

total # subm.s︷ ︸︸ ︷
l1 · (2d−1 − 1)

l1 · 2d−2︸ ︷︷ ︸
# lowest subm.s

⎤
⎥⎥⎥⎥⎥⎥⎥

⇒ Branching list: l1 : 2 : 2 : . . . : ld︸ ︷︷ ︸
d levels

A central problem for the usage of the nested scheme is the choice of appro-
priate prefetch values per level, specified by the second parameter. A submaster
with m workers requiring prefetch p should receive a prefetch of at least m · p
tasks to be able to supply p initial tasks to its child processes. Given a worker
(leaf) prefetch of pf and a branching list [l1, ..., ld−1, ld], this leads to the following
minimum prefetch at the different levels:⎡

⎣ d−1∏
j=k

lj ∗ pf | k ∈ [1 . . . d − 1]

⎤
⎦ = [(l2 · l3 · l4 · pf), (l3 · l4 · pf), (l4 · pf), pf ]

A reserve of one task per child process is added to this minimum, to avoid the
submaster running out of tasks, since it directly passes on the computed prefetch
amount to its children. The list of prefetch values is computed by a scanr1.

2.3 Experimental Results

We have tested the presented nesting scheme with different branching and
prefetch parameters, with an application that calculates a Mandelbrot set
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(a) Non-hierarchical, , pf 60

(b) branching [4], , pf 60

(c) branching [4], , pf 120

(d) branching [2,2], , pf 60

Fig. 4. Mandelbrot traces, with different nesting and varying prefetch

visualisation of 5000 × 5000 pixels. All experiments use a Beowulf cluster of the
Heriot-Watt University Edinburgh, 32 Intel P4-SMP nodes at 3 GHz with 512
MB RAM and Fast Ethernet. The timeline diagrams in Figure 4 visualise the
process activity over time for program runs with different nesting and prefetch.
Blocked processes are red (dark), and active/runnable processes green/yellow
(light).

Flat vs. Hierarchical Master-worker System. The hierarchical system shows bet-
ter runtime behaviour than the flat, i.e. non-hierarchical version. Although fewer
PEs are available for worker processes, the total runtimes decrease substantially.
Figure 4(a) shows a trace of the non-hierarchical master-worker scheme. Many
worker processes are blocked most of the time. In a hierarchical version with a
single additional level comprising four submasters, shown in (b), workers finish
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Fig. 5. Runtimes for various hierarchies and prefetch values

faster. Due to the regular structure of the hierarchy, some of the workers in
the last branch share the same PE. Nevertheless, the system is well-balanced,
but not completely busy. The dynamic task distribution of the master-worker
inherently compensates load imbalance due to slower workers or irregular tasks.

Load Balance and Prefetch Values. In Figure 4(c), we have applied the same
nesting as in (b), but we increased the prefetch value to 120. Small prefetch
values lead to very good load balancing, especially PEs occupied by several (and
therefore slow) workers do not slow down the whole system. On the other hand,
low prefetch lets the workers run out of work sooner or later. Consequently, it is
better to correlate prefetch values with the worker speed. Higher prefetch values
(like 120) reduce the worker idle time, at the price of a worse load balance, due
to the almost static task distribution.

Depth vs. Breadth. Figure 4(d) shows the behaviour of a nested master-worker
scheme with two levels of submasters. It uses 2 submasters at the higher level,
each serving two submasters. From our experiments, we cannot yet identify clear
pros and cons of employing deeper hierarchies. Comparing runs with one and
two additional submaster-levels, runtime and load balancing behaviour are al-
most the same, the advantage of the one-level hierarchy in Figure 4(b) remains
rather vague. As shown in Figure 5, a broad flat hierarchy reveals the best total
runtimes. However, the submasters will as well become bottlenecks when serving
more and more child processes. Therefore, deeper hierarchies will be advanta-
geous on bigger clusters with hundreds of machines.

Garbage Collection and Post-Processing. Another phenomenon can be observed
in traces (a), (b) and (d): If the prefetch is small, relatively short inactivity at the
tree root can make the whole system run out of work and lead to global inactivity.
In this case, the reason are garbage collections in the master process, which make



Hierarchical Master-Worker Skeletons 255

all the submasters and workers run out of tasks. The effect is intensified by
higher top-level branching, and compensated by higher prefetch (c).

Additional experiments have shown that the bottleneck in the master process
is mainly caused by the size of the result data structures, collected and stored
in the master’s local heap. This causes the long post-processing phases that can
be observed in our traces. Moreover, since new requests are processed together
with the result values, request processing is slowed down in the master processes.
Using the same setup as in the previous experiments but replacing worker results
with empty lists, the master has no problems to keep all workers busy, even with
small prefetch values and no hierarchy.

2.4 Result Hierarchies

The hierarchy throttles the flow of results and thus helps shorten the post-
processing phases. Therefore, the hierarchical master-worker skeletons show bet-
ter total runtimes, as shown in Figure 5. The skeleton can further be optimised by
decoupling result and request communication. Results may be much larger and
hence more time consuming to be sent than simple requests of type Int. When
requests are sent concurrently and directly to the master, they can be received
and processed faster, speeding up work distribution. This, however, applies only
if the master is not too busy collecting results.

...

[task]

[result]

[task]

[task]

[result]

[result]
... workerworker ... workerworker

distributor

 m:1

  collector

 m:1

  coll/work

 m:1

  coll/work

[result]

[Request]

 n:1

Fig. 6. Result-hierarchical scheme with
separation of distributor and collector

In this section, we consider a skele-
ton which collects the results hier-
archically to unload the master, but
sends requests and tasks directly from
the master to the workers. The inner
processes of the process tree collect
the results from their child processes,
but also serve as additional workers.
The result streams of inner workers
are merged with the collected ones,
and forwarded to their parent process.
To speed up the work distribution, we
additionally separate the task distrib-
utor functionality of the master from
its collector role (also proposed in [6]),
which is only a minor change to the
previous result-hierarchical skeleton. The result-collecting master creates a dis-
tributor process and redirects the direct connections between master and work-
ers to exchange tasks and results. The resulting process structure is depicted in
Figure 6.

Figure 7 shows traces for the non-hierarchical skeleton with concurrent re-
quest handling, with and without a separate distributor process, and a variant
which collects results in a hierarchy, with 4 submasters. As shown in trace (a),
concurrent request handling alone does not improve the skeleton performance.
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(a) Concurrent request handling, non-hierarchical, , pf 20

(c) result hierarchy, , pf 10

(b) separate distributor, non-hierarchical , pf 20

Fig. 7. Mandelbrot traces, different result-hierarchical skeletons

Separating the distributor (trace (b), top bar shows distributor) already creates
an almost steady workload for the workers, but exposes the same long post-
processing. A result hierarchy (trace (c), without separate distributor) shortens
the post-processing phase to some extent, while keeping the same positive effect
on worker load.

3 Dynamic Creation of New Tasks

Except for some problems consisting of independent tasks which are trivial to
parallelise, e.g. mandelbrot, ray tracing and other graphical problems, many
problems deliver tasks containing inherent data dependencies. Thus, the task
pool is not completely known initially, or it depends on other calculation results
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to be fully defined. This is the case when the problem space is built hierarchically,
as a tree structure or following other, more complex, patterns.

3.1 The Dynamic Master-Worker Skeleton

The elementary master-worker skeleton can easily be extended to enable the
dynamic creation of additional tasks within the worker processes. In the version
shown in Figure 8, the worker processes deliver a list of new tasks with each
result, and the master simply adds the new tasks to its task queue. A straight-
forward extension would be to let the master filter or transform the task queue,
considering global information (main point of investigation in [7]).

mwDyn :: (Trans t, Trans r) => Int -> Int -> (t -> (r,[t])) -> [t] -> [r]
mwDyn n prefetch wf initTasks = finalResults
where -- identical to static task pool except for the type of workers

(reqs, ress) = (unzip . merge) (spawn workers inputs)
workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate prefetch [0..n-1])
-- additions for task queue management and termination detection
tasks = initTasks ++ newTasks
initNumTasks = length initTasks
(finalResults, newTasks) = tdetect ress initNumTasks

-- task queue control for termination detection
tdetect :: [(r,[t])] -> Int -> ([r], [t])
tdetect ((r,[]):ress) 1 = ([r], []) -- final result
tdetect ((r,ts):ress) numTs = (r:moreRes, ts ++ moreTs)
where (moreRes, moreTs) = tdetect ress (numTs-1+length ts)

Fig. 8. Eden master-worker skeleton with a dynamic task pool

The static task pool version terminates as soon as all the tasks have been
processed. With dynamic task creation, explicit termination detection becomes
necessary, because the task list contains a reference to potential new tasks. In
the skeleton shown in Figure 8, a function tdetect keeps track of the current
number of tasks in process. It is essential that the result list is extracted via
tdetect and that the evaluation of this function is driven by the result stream.
As long as new tasks are generated, the function is recursively called with an
updated task counter, initialised to the length of the skeleton input.2 As soon
as the result of the last task arrives, the system terminates by closing the tasks
list and, via distribute, the input streams of the worker processes.

2 The reader might notice that the initial task list now has to have fixed length. This
skeleton cannot be used in a context where the input tasks arrive as a stream.
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3.2 Nesting the Dynamic Task Pool Version

It would be possible to apply the simple nesting scheme from Section 2 to the dy-
namic master-worker skeleton mwDyn. However, newly created tasks would always
remain in the lower submaster-worker level because the interface of mwDyn only
passes results, but not tasks, to upper levels. For nesting, the dynamic master-
worker scheme mwDyn has to be generalised to enable a more sophisticated task
management within the submaster nodes.

...

[(r,[t],Bool,Int)]

count tasks,
trigger req.s
termination

[Maybe t]

[Maybe t]

[request]

split
new
tasks

 [(r,[t],Bool,Int)]

map 
Left

distribute

sub- / topmaster

(counter,mode)

[Maybe t]

map 
Right

subm./worker subm./worker subm./worker

tcontrol

Fig. 9. Submaster functionality in the dy-
namic master-worker hierarchy

Each submaster receives a task
stream from its master and a re-
sult stream including new tasks from
its workers. It has to produce task
streams for its workers and a result
stream including new tasks for its mas-
ter (see Figure 9). Sending back all dy-
namically generated tasks is a waste
of bandwidth, when they might be
needed in the local subtree. A por-
tion of the generated new tasks can be
kept locally, but surplus tasks must be
passed up to the next level. Further-
more, sending a result should not au-
tomatically be interpreted as a request
for a new task, since tasks kept locally
can compensate for solved tasks. Finally, global information about tasks in pro-
cess is needed at the top-level, to decide when to terminate the system. The
Eden code for the submaster in Figure 10 shows the necessary changes:

– The input stream for submasters and workers has type Maybe t, where the
value Nothing serves as a termination signal, propagated downwards from
the top level.

– The output stream of submasters (and workers) now includes information
about the number of tasks kept locally, and a Bool flag, indicating the request
for a new task, leading to type [(r,[t],Bool,Int)].

– The incoming list initTasks for submasters is a stream, which has to be
merged with the stream of worker answers, and processed by a central control
function tcontrol. The origin of each input to tcontrol is indicated by tags
Left (worker answers) and Right (parent input), using the Haskell sum type
Either (Int,(r,[t],Bool,Int)) (Maybe t)

– All synchronisation is concentrated in the task control function tcontrol. It
both controls the local task queue, passes new requests to distribute, and
propagates results (and a portion of generated tasks) to the upper levels.

The heart of the dynamic master-worker hierarchy is the function tcontrol,
shown in Figure 11. It maintains two counters: one for the amount of tasks
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mwDynSub :: (Trans t, Trans r) =>
Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)])
-> [Maybe t] -> [(r,[t],Bool,Int)]

mwDynSub n pf wf initTasks = finalResults where
fromWorkers = spawn workers inputs
-- worker :: [Process [Maybe t] [(Int,(r,[t],Bool,Int))]]
workers = [process (zip [i,i..] . wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate pf [0..n-1])
-- task queue management
ctrlInput = merge (map Right initTasks : map (map Left) fromWorkers)
(finalResults, tasks, reqs) = tcontrol (n*pf+n) (False,0,0) ctrlInput

Fig. 10. Eden submaster for nested dynamic master-worker skeleton

that have been generated and passed up to this submaster, to decide whether a
request must be sent up, and the overall task count in the subtree below.

Tasks sent by the parent are simply enqueued in the local task queue. Tasks
generated by workers are split into a part that is kept local, and a part that is
passed upwards. The nested task pools can be seen as a system of interdependent
buffers, and both buffer-underruns and buffer-overruns will spoil the skeleton
performance. This is relatively easy for a static task list: the exchange of tasks
and results between different buffers is limited, and the prefetch parameter
defines the maximum buffer size. In the extension for dynamically growing task

tcontrol _ (_,_,0) ((Right Nothing):_) -- from above, final termination
= ([],repeat Nothing,[])

tcontrol pf (even,local,numTs) ((Right (Just t)):ress) -- task from above
= let (moreRes, moreTs, reqs) = tcontrol pf (even, local ,numTs+1) ress

in (moreRes, (Just t):moreTs, reqs)
-- from i below, (result, new tasks, flag, no. of retained tasks)
tcontrol pf (even,local,numTs) ((Left (i,(r,ts,wantNew,tBelow))):ress)
= let (localTs,fatherTs,evenAct) = split numTs pf ts even

newLocal = length localTs + local
- if wantNew && not newTasksForMe then 1 else 0

newNumTs = numTs-1 + length localTs + tBelow
(moreRes, moreTs, reqs)
= tcontrol pf (evenAct, newLocal, newNumTs) ress

newreqs = if wantNew then i:reqs else reqs
newTasksForMe = local + length localTs == 0 && wantNew

in ((r, fatherTs, newTasksForMe, heldBelow + lenlocalTs):moreRes,
(map Just localTs) ++ moreTs, newreqs)

Fig. 11. Control function for submaster of Figure 10
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pools, more sophisticated policies are needed instead of mechanically forwarding
new tasks and requests.

To achieve a roughly even level of tasks in each submaster, the task pool size is
limited by two thresholds (sometimes called low and high watermark [3]). When
too few tasks are locally generated, additional new tasks must be requested from
the upper level, while all surplus tasks must be forwarded to upper levels. In our
version, tcontrol emits requests when all self-generated tasks have been assigned,
thereby trying to maintain its initial local task buffer size, given by the prefetch

parameter. The split function decides how many tasks to hold in the subtree
below a submaster. If a sufficient amount of self-generated tasks fills the subtree
below the node (overall task count numTs), all generated tasks are forwarded to
the upper level. The split function we use (not shown) splits generated tasks
one half each, until the total task count exceeds the double prefetch for the
whole subtree below. Different heuristics can be configured by exchanging the
split function, and minor changes in tcontrol.
The top-level master in the nesting scheme for a dynamic task pool works similar
to the submasters we have described, but of course cannot forward tasks to the
outside. A separate top-level master has to be defined.

topMaster :: (Trans t, Trans r) =>
Int -> Int -> ([Maybe t] -> [(r,[t],Bool,Int)]) -> [t] -> [r]

Besides termination detection, the former tdetect function now takes the role of
tcontrol in the submaster processes, also incorporating the more sophisticated
request handling we have introduced in the tcontrol function. Further changes
are the adaption of the worker function to the Maybe type interface and the
termination signal Nothing for all submasters upon termination.

3.3 Experimental Results

The skeletons that support dynamic task creation have been tested with a special
test application: a program which computes all satisfying variable assignments
for a particular logical formula (i.e. it is a specialised SAT problem solver). Tasks
are incomplete variable assignments, and the workers successively assign a value
to a new variable and partially evaluate the result. An assignment that already
yields false is immediately discarded, true results are counted, yet unspecified
results are new tasks returned to the level above.

The test program runs the satisfiability check for a formula which disjoins
all conjunctions of n logical variables where k variables are negated (yielding(
n
k

)
disjoint monoms). In the underlying search tree of the SAT problem, each

node has at most two child nodes, but for particular formulas, many subproblem
nodes in the search tree can immediately be discarded. Using a formula of 200
variables and 1 negation tests the skeleton behaviour for such a broad sparse
tree. Especially with sparse search trees, it is challenging for the load balancing
strategy to evenly fill the process hierarchy with tasks, avoiding idle times. Many
tasks can be discarded early, but the test for 200 variables is complex. In contrast,
a test with negated 8 variables out of 16 shows the performance for a dense tree
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16/8 var.s
16/8 var.s, task variant

Runtime (sec)
16 var.s, dense tree 7.16 7.09 5.58 5.55 5.94

200 var.s, sparse tree 21.16 17.03 14.13 12.90 13.19

16 var.s, task variant 7.12 6.97 5.50 5.36 5.85

200 var.s, task variant 21.28 16.57 10.81 9.08 10.61
(Heriot-Watt Beowulf, 31 nodes)

Fig. 12. Experiments using skeletons for dynamic task pool

with very small tasks. Runtimes have been compared for the basic skeleton,
for hierarchies with one level of two, four and six submasters, and for a binary
hierarchy with two levels.

Flat vs. Hierarchical Skeleton: In general, variants of hierarchical master-worker
schemes perform better than the non-hierarchical skeleton in our test runs. How-
ever, when testing a formula with only 16 variables, tasks are numerous, but very
simple. For this variant, hierarchical skeletons yield smaller runtime gains.

Depth vs. Breadth: The runtime comparison in Figure 12 shows that, in our setup
of 31 machines, broader hierarchies with only one level perform better than
the binary two-level hierarchy. The variant with 6 submasters yields the best
results, whether sparse or dense decision trees. Measurements with a simplified
test procedure, where tasks are checked very quickly using additional knowledge
about the tested formula, confirm this result: The performance of the skeleton
with two-level nesting is slightly worse than for the one-level nestings. Of course,
this result again has to be qualified for bigger clusters.

Prefetch and Forwarding Policy: Prefetch values have little influence on perfor-
mance (or trace appearance) for this test program, since there are relatively few
tasks in the beginning anyway and many of the generated tasks are held close
to the processing units. Higher prefetch values only lead to “bundled” working
and idle phases instead of a more steady workload. Using higher prefetches, we
also observed periods of global inactivity, again caused by garbage collections of
the top-level master.
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The partition policy for tasks returned by workers is a crucial property for an
even global load balance. Our minimum threshold, the prefetch parameter, is self-
suggesting: requests are emitted when locally generated tasks cannot keep the
buffer filled. For the maximum threshold, our experiments have confirmed that
increasing the high watermark for the split policy hardly produces perfomance
gains. While the very existence of a maximum threshold has principal impact on

, prefetch 6

Fig. 13. Trace for SAT solver (200/1 var.)

the load balance (especially in our
setup where only few new tasks
are created), it is not necessary
to add another parameter to the
skeleton.

Figure 13 shows a trace for a
program run using the best skele-
ton in our experiment, with six
submasters above the leaves, on a
sparse decision tree. The workers
expose a slow startup phase, since
the (relatively few) tasks must
first be propagated in all branches.
Tasks are well distributed among
the different submaster branches,
leading to an even workload
among the worker processes. Even
though some PEs are reserved as
submasters, the remaining work-
ers outperform the non-hierachical
skeleton close to factor 2.

4 Related Work

The commonly used master-worker scheme with a single master managing a
set of workers is a well-known scheme which has been used in many different
languages [1]. Modifications of this scheme are however more rare, and we are
not aware of general hierarchical master-worker schemes like ours.

Driven by the insight that the propagation of messages is expensive in a master-
worker scheme, Poldner and Kuchen [6] present a variant where the master is di-
vided into a task distributor (dispatcher) and a result collector. As described in
2.4, we extended this variant to a skeleton with a hierarchy of collectors and only
one distributor. In order to save communication, the dispatcher of Poldner and
Kuchen applies a static task distribution, and they argue that for a large number
of tasks, a roughly even load balance can be expected. However, this contradicts
one basic idea of dynamic master-worker skeletons: the intention to balance not
only task irregularity, but also potential differences in worker performance.

In [5], Poldner and Kuchen investigate skeletons for branch & bound problems.
A centralized master-worker skeleton is compared to a set of distributed workers
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connected by a bidirectional ring, without a central master. Distributed workers
can establish load balance using a supply-driven or a demand-driven mecha-
nism. In addition to the load balancing problem, the paper addresses branch &
bound-specific requirements like fast propagation of updated bounds, and dis-
tributed termination detection. In the experiments with two branch & bound
algorithms, the distributed skeleton with demand-driven load balancing shows
best performance, due to the reduced communication need.

Hippold and Rünger describe task pool teams [2], a programming environment
for SMP clusters that is explicitly tailored towards irregular problems with strong
inter-task dependences. The scheme comprises a set of task pools, each running
on its own SMP node, and interacting via explicit message passing. Dynamic
task creation by workers, task migration, and distributed task pools with a task
stealing mechanism are possible. Locality can be exploited to hold global data on
the SMP nodes, while communication between nodes is used for task migration,
remote data access, and global synchronisation.

Various load balancing strategies for divide-and-conquer algorithms are dis-
cussed by Nieuwpoort et al., in [8]. The authors experiment with different tech-
niques to exchange tasks between autonomous worker processes, in the context
of WAN-connected clusters (hierachical wide-area systems). Aside from special
optimisations to handle different network properties, a basic distinction is made
between task pushing and stealing approaches. Demand-driven work stealing
strategies are generally considered advantageous, but must take into account
the high latency connections in question. The work pushing strategy specula-
tively (and blindly) forwards tasks to random peers when the amount of lo-
cal tasks exceeds a prefetch threshold. Contrary to the randomised, or purely
demand-driven, task distribution in this work, our skeletons are always based on
task-request cycles, and concentrate surplus tasks at higher levels.

5 Conclusions

We have given a series of functional implementations of the parallel master-
worker scheme. The declarative approach enables a clear conceptual view of the
skeleton nesting we have developed.

Starting with a very compact version of the standard scheme, we have given
implementations for skeleton nesting, to shift the administrative load to a whole
hierarchy of (sub-)masters. The hierarchies have been elegantly expressed as
foldings over the modified basic scheme. In the case of a dynamically growing task
pool, a termination detection mechanism is needed. Nesting this skeleton is far
more complex and needs special code for submasters, especially an appropriate
task forwarding policy in the submaster processes.

As our tests show, master-worker hierarchies generally speed up runtime and
keep workers busier, avoiding the bottleneck of a flat skeleton. Hierarchy layout
and suitable prefetch values, however, have to be chosen carefully, depending on
the target architecture and problem characteristics. Our experiments show the
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importance of suitable task distribution and task forwarding policies, which we
have described and discussed in detail.

We have presented implementations and experiments with a range of hierar-
chical master-worker variants, and we will continue investigations on some open
topics. As ongoing work, we will develop distributed work pools, like the one pro-
posed by Poldner and Kuchen in [5], and compare them to our master-worker
hierarchies.
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Abstract. Logtalk, an object oriented logic programming language,
provides experimental support for multi-threading programming with se-
lected back-end Prolog compilers. By making use of core, low-level Prolog
predicates that interface with operating-system native threads, Logtalk
provides a high-level set of directives and predicates that allows program-
mers to easily take advantage of modern multi-processor and multi-core
computers without worrying about the details of creating, synchroniz-
ing, or communicating with threads. Logtalk multi-threading program-
ming features include support for concurrent calls akin to and-parallelism
and or-parallelism, non-deterministic thread goals, asynchronous calls,
and predicate synchronization. The integration with the Logtalk object-
oriented features allows objects to send and receive both synchronous and
asynchronous messages and to call local predicates concurrently. Logtalk
multi-threading features are orthogonal to object-oriented concepts and
can be useful even in the context of plain Prolog.

Keywords: logic-programming, concurrency, threads.

1 Introduction

In recent years, computers supporting multiple processors and multi-core pro-
cessors have become mainstream. Major players in the hardware business such
as Intel, AMD, or IBM provide complete lines of multi-core processors for desk-
top and portable computers. In fact, nowadays, we have to look hard to buy
a single-core personal computer. Coupled with the support for multi-threading
applications found on current operating systems, there is a strong incentive to
migrate from pure sequential programs to programs that take performance and
responsiveness advantages from using multiple threads.

Writing multi-threading applications implies using programming languages
that provide the necessary support for thread creation, synchronization, and
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communication. One of the most commonly used multi-threading Application
Programming Interface (API) is defined by the POSIX standard. The POSIX
threads API or, as commonly know, pthreads, is a set of C functions deal-
ing with thread management, mutual exclusion, and condition variables1 [1,2].
Given that most Prolog compilers are implemented in C or C++, pthreads is
a common choice for providing core, low-level multi-threading built-in predi-
cate support. However, despite threads being a powerful programming mecha-
nism, it is easy to get into trouble when failing to properly synchronize threads
accessing shared resources such as input/output streams and dynamic state.
Although there are always tasks where a low-level multi-threading API is nec-
essary, programming scenarios where a simpler, high-level interface is preferred
are common. Recently, high level multi-threading programming constructs for
imperative languages have become popular. For example, the OpenMP API [3,4]
implements high level programming constructs for shared-memory parallel appli-
cations, working as a pre-processor for C, C++ and Fortran. Another example is
Intel’s Threading Building Blocks [5], which provides high-level, task-based par-
allelism to C++. In the case of Prolog, earlier attempts to automate code paral-
lelization proved difficult due to language semantic issues, e.g. order-dependency
between goals. Nevertheless, extensive research [6] has resulted in a number of
successful experimental systems, such as e.g. Andorra-I [7] and Muse [8]. These
systems suffer from maintenance and portability problems, however, stemming
from the complexity of their inner workings. Therefore, we cannot always rely
on them for industrial applications. Logtalk [9,10] takes a more pragmatic ap-
proach, striving for a simple and minimal set of directives and built-in predicates
that allows programmers to easily take advantage of modern multi-processor
and multi-core computers without worrying about low-level details of creating,
synchronizing, or communicating with threads. Our work is motivated by past
experiences with multi-agents systems (mostly using Logtalk with Peter Robin-
son’s Qu-Prolog) and by a current project on the validation of large CAD/CAM
data model files [11] where most steps are natural candidates for parallelization
due to their independence and being side-effects free. Logtalk multi-threading
development is guided by four main goals: (1) simple support for making con-
current calls, mostly for parallelizing independent computations; (2) support
for asynchronous calls, where we can start a computing thread, perform some
other tasks, and later retrieve the thread goal solutions; (3) simple directives
for predicates that need to be synchronized due to side-effects; (4) a portable
and robust implementation, capable of running with several back-end Prolog
compilers in most operating-systems. Interestingly, these goals are orthogonal to
Logtalk object-oriented features. Although objects provides an execution con-
text for our multi-threading predicates and directives, where we take advantage
of objects encapsulation and of objects local database, our results can also be ap-
plied in the context of plain Prolog (complementing, not replacing, core low-level
multi-threading support).

1 Condition variables allow the implementation of notification mechanisms where a
thread suspends execution until some condition becomes true.
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This paper begins by describing the core support found on current Prolog
compilers for multi-threading programming, used as a foundation for our work.
Second, the Logtalk multi-threading programming features are presented and
discussed. A brief comparison with related work follows. We conclude by dis-
cussing the current status of our work. Full documentation, complete code of
the examples, and the implementation of the multi-threading features described
in this paper are available with the current Logtalk stable distribution. The
reader is invited to try out and give feedback on the actual system.

2 Starting Point: Prolog Multi-threading Core Support

Prolog compilers such as SWI-Prolog [12], YAP [13], Qu-Prolog [14,15], BinPro-
log [16,17], XSB [18,19], or Ciao [20] provide a low-level, comprehensive set of
built-in predicates supporting multi-threading programming. Most of these Pro-
log compilers make use of pthreads or, for some operating systems, of a suitable
emulation. A recent ISO standardization proposal [21], started in April 2006,
aims to specify a common core of low-level multi-threading programming sup-
port based on the semantics of POSIX threads2. We have decided to base the
Logtalk high-level support for multi-threading programming on this common
interface. The current Logtalk version supports multi-threading programming
using SWI-Prolog, YAP, and XSB as back-end Prolog compilers; we expect soon
to be able to support Qu-Prolog, pending on-going work on the implementation
of the current standardization proposal.

The current ISO standardization proposal specifies a comprehensive set of
predicates for thread, mutex, and message queue management. It also includes a
set of predicates for querying and setting thread creation default options. Most
of these options deal with the different per-thread memory areas such as the
stacks used by the Prolog implementation. The size of these memory areas is
specially relevant for 32-bit architectures. The maximum number of threads we
can create before exhausting the memory address space3 can be severely limited
by default size values aimed to cover most cases without the need of hand-
tuning. Prolog implementations differ on their memory handling mechanisms.
For heavily multi-threaded applications, implementations using stack-shifters for
keeping default memory sizes small, dynamically expanding memory only when
necessary, have an advantage over implementations that allocate large chunks
of virtual memory space to simplify memory handling, relying on the operating
system virtual memory mechanisms. This is important for a high-level multi-
threading API such as the one provided by Logtalk, where it is not desirable to
force the programmer to worry about such low-level details as the default thread
stack size. Another key feature of the ISO proposal is that threads do not share

2 The standardization group includes so far SWI-Prolog, YAP, Qu-Prolog, XSB, and
Ciao developers. Collaboration from other interested parties is most welcome.

3 Note that we are talking about virtual memory space; actually used memory is often
much less.
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variables. This feature both constrains and simplifies the Logtalk multi-threading
features and their implementation.

3 Logtalk Multi-threading Support: Overview

Logtalk multi-threading programming is supported by a small set of built-in
predicates and directives, which can be regarded as a high-level API complement-
ing, not replacing, the core, lower-level API provided by selected Prolog compil-
ers. This high-level API can be split in three groups of predicates and a set of
directives. The first group contains a single predicate, threaded/1, which supports
concurrent calls akin to and-parallelism and or-parallelism. The second group of
predicates provide support for asynchronous calls, here interpreted as separating
proving a goal from the retrieval of the goal solutions. Two basic predicates are
provided, threaded call/1 and threaded exit/1, supporting non-deterministic
thread goals. From these two predicates, we derive three specialized predicates:
threaded once/1, threaded ignore/1, and threaded peek/1. The third group of
predicates allows thread synchronization using notifications, which are arbitrary,
programmer-defined non-variable terms. Notifications are used as a peer-to-peer
mechanism supported by the predicates threaded wait/1 and threaded notify/1.
The Logtalk multi-threading directives include two object directives, threaded/0
and synchronized/0, and a predicate directive, synchronized/1, enabling an ob-
ject to make multi-threading calls and supporting object and predicate-level
synchronization. Logtalk multi-threading predicate calls always take place within
the context of an object4. Thus, objects are able to send and receive both syn-
chronous and asynchronous messages and to call local predicates concurrently. In
the following sections, we provide a detailed account of Logtalk multi-threading
support, illustrated with several examples, with an emphasis on the technical
aspects of the current implementation.

4 Object Message Queues

Logtalk object message queues are used whenever an object defines predicates
that make concurrent calls or asynchronous calls. In order to automatically create
and set up an object message queue the threaded/0 object directive is used:

:- threaded.

The object message queue is created when the object is compiled and loaded into
memory or when created at runtime (the message queue for the pseudo-object
user is automatically created at Logtalk startup). These message queues are
only bounded be available memory and are used internally for storing replies to
the threaded calls made from within the objects themselves and for exchanging
thread notifications, as we will discuss later. The implicit use of object message
4 When at the Logtalk top-level interpreter, the execution context is the pseudo-object

user.
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queues for storing and exchanging thread results provides a cleaner and simpler
alternative to the explicit use of blackboards or the dynamic database, as found
on some other systems.

It is tempting to make this directive optional, thus simplifying Logtalk multi-
threading programming. In most cases, the Logtalk compiler could simply set
up the creation of the object message queue when finding a call to a multi-
threading built-in predicate in the body of an object predicate. However, it is
always possible to construct new goals at runtime that call the multi-threading
built-in predicates. In addition, an object may import a category5 whose predi-
cates make multi-threading calls (see section 7.3 for an example). Creating the
object message queue on the fly is possible but would lead to runtime errors if
the back-end Prolog compiler does not support all the core multi-threading fea-
tures Logtalk relies on. Thus, we choose to make the threaded/0 object directive
mandatory. This allows us to both check at compile time for proper back-end
Prolog compiler support and to cope with threaded goals generated at runtime
in ways that cannot be anticipated by the Logtalk compiler.

5 Making Concurrent Calls

Logtalk provides a basic multi-threading built-in predicate, threaded/1, which
supports concurrent calls akin to both and-parallelism and or-parallelism. In
this context, and-parallelism and or-parallelism refers to using, respectively, a
conjunction of goals and a disjunction of goals as a predicate argument. This
built-in predicate is deterministic and opaque to cuts. Each goal in its argument
is proved in its own thread (except when the argument is neither a conjunction
nor a disjunction of goals, in which case no threads are created for proving it
and the predicate is equivalent to the standard Prolog built-in predicate once/1).
Goals can be calls to local object predicates, messages to self, or messages to
other objects. Thus, both local predicates and other object methods can be called
concurrently.

5.1 And-Parallelism

When the argument is a conjunction of goals, the threaded/1 predicate call blocks
the caller thread until either one of thread goals fails, rises an exception, or all
the implicit thread goals succeed. A failure or an exception leads to the imme-
diate termination of the other threads. The and-parallelism functionality of the
threaded/1 predicate covers a common programming pattern on multi-threading
applications: parallelizing a set of independent computations. Here, independent
computations translate to a conjunction of goals with no shared variables. Thus,
each goal can be proved in parallel without worrying about synchronizing vari-
able instantiations or suspending a thread goal until a variable is instantiated.
5 Logtalk categories are object building blocks (components), which can be virtu-

ally imported (without code duplication) by any object, irrespective of inheritance
relations.
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Nevertheless, it turns out that forbidding the use of shared variables is over-
restrictive and, with care, the programmer can sometimes use shared variables
to further improve performance. For example, assume that we want to find all
prime numbers in a given interval using two threads. We could write:

prime_numbers(N, M, Primes) :-
M > N,
N1 is N + (M - N) // 2,
N2 is N1 + 1,
threaded((

prime_numbers(N2, M, [], Acc),
prime_numbers(N, N1, Acc, Primes)

)).

In this simple example, the two prime numbers/4 goals in the threaded/1 predicate
call share a variable (Acc) that acts as an accumulator, allowing us to avoid
a call to an append/3 predicate at the end (which would cancel part of the
performance gains of using multi-threading). At a user level, sharing variables
meets the expectations of a programmer used to single-threading programming
and suggests easy parallelization of single-threaded code by simply wrapping-
around goals in threaded/1 predicate calls. At the implementation level, sharing
variables between thread goals is problematic as the core Prolog thread creation
predicates make a copy of the thread goal, thus loosing variable bindings. When
a thread goal terminates, the variable bindings are reconstructed by Logtalk in
the process of retrieving the goal solutions. That is, shared variables are only
synchronized after thread termination. A failure to synchronize shared variables
results in the failure of the threaded/1 call. Depending on how each goal uses the
shared variables, their use may lead to other problems. For example, a predicate
call may depend on a shared variable being instantiated in order to behave
properly. This will not work as the thread goals are independently proved. Safe
use of shared variables implies that the individual thread goals do not depend
on their instantiation, as in the example above where the shared variable is
used only as an accumulator. Research on these cases, which are examples of
non-strict independent and-parallelism, is described on [22].

5.2 Competing Threads: Reinterpreting Goal Disjunction

The threaded/1 predicate allows a disjunction of goals to be interpreted as a set
of competing goals, each one running in its own thread. The first thread to ter-
minate successfully leads to the termination of the other threads. Thus, the goals
in a disjunction compete for a solution instead of being interpreted as possibly
providing alternative solutions. This is useful when we have several methods to
compute something, together with several processors or cores available, without
knowing a priori which method will be faster or able to converge into a solution.
For example, assume that we have implemented several methods for calculating
the roots of real functions. We may then write:
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find_root(Function, A, B, Error, Zero, Method) :-
threaded((

bisection::find_root(Function, A, B, Error, Zero),
Method = bisection

; newton::find_root(Function, A, B, Error, Zero),
Method = newton

; muller::find_root(Function, A, B, Error, Zero),
Method = muller

)).

The threaded/1 call returns both the identifier of the fastest method and its
result. Depending on the function and on the initial interval, one method may
converge quickly into the function root while other method may simply diverge,
never finding it. This is a pattern typical of other classes of algorithms (e.g.
graph path-finding methods or matrix eigenvalues calculation methods), making
the threaded/1 predicate useful for a wide range of problems.

It is important to stress that only the first successful goal on a disjunction can
lead to the instantiation of variables on the original argument. Thus, we do not
need to worry about the representation of multiple bindings of the same variable
across different disjunction goals.

The effectiveness of this predicate relies on two factors: (1) the ability to
cancel the slower threads once a winning thread completes and (2) the number
of cores available. Canceling a thread is not always possible or as fast as desirable
as a thread can be in a state where no interrupts are accepted, depending on
the computations being performed. Aborting a thread is tricky in most multi-
threading APIs, including pthreads. In the worst case scenario, some slower
threads may run up to completion. Most current laptop and desktop computers
contain two, four, or eight cores, making the possible waste of processing power
by slower, non cancelable threads problematic. However, the number of cores per-
processor is expected to rise steadily over the next years with each new generation
of processors, making the concept of competitive or-parallelism presented here
an interesting proposal for implementing speculative threading (see e.g. [23]).
Thus, the usefulness of the threaded/1 predicate or-parallelism functionality is
both hardware bounded and application-domain dependent.

6 Making Asynchronous Calls

Logtalk provides two basic multi-threading built-in predicates, threaded call/1

and threaded exit/1, which allows us to make asynchronous calls and to later
retrieve the corresponding results. Paired threaded call/1 and threaded exit/1

calls must be made from within the same object. An asynchronous call can
be either a call to a local object predicate or a message sending call. Being
asynchronous, a call to the threaded call/1 predicate is always true and results
in the creation of a new thread for proving its argument. In addition, no variable
binding occurs as a consequence of the call. The thread results (goal success,
failure, or exception) are posted to the message queue of the execution context
object. A simple example:
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| ?- threaded_call(sort([3,1,7,4,2,9,8], _)).
yes

| ?- threaded_exit(sort([3,1,7,4,2,9,8], Sorted)).
Sorted = [1,2,3,4,7,8,9]
yes

This example shows how a threaded exit/1 call picks up the solutions from a
threaded call/1 with a matching goal argument. When multiple threads run
a matching goal, the threaded exit/1 call picks up the first thread to add a
goal solution to the message queue of the execution context object. Calls to
the threaded exit/1 predicate block the caller until the object message queue
receives the reply to the asynchronous call. Logtalk provides a complementary
predicate, threaded peek/1, which may be used to check if a reply is already avail-
able without removing it from the object message queue. The threaded peek/1

predicate call succeeds or fails immediately without blocking the caller. However,
repeated use of this predicate is equivalent to polling a thread queue, which may
severely hurt performance.

When using asynchronous calls, the link between a threaded exit/1 call and
the corresponding threaded call/1 call is made using unification. When there are
several threaded call/1 calls for a matching threaded exit/1 call, the connection
can potentially be established with any of them. For those cases where this
behavior is deemed problematic (e.g. due to goal side-effects), Logtalk provides
extended threaded call/2 and threaded exit/2 built-in predicates that allows
the use of call identifier tags. For example:

| ?- threaded_call(sort([3,1,7,4,2,9,8], _), Tag1),
threaded_call(sort([3,1,7,4,2,9,8], _), Tag2).

Tag1 = 1,
Tag2 = 2
yes

| ?- threaded_exit(sort([3,1,7,4,2,9,8], Sorted), 2).
Sorted = [1,2,3,4,7,8,9]
yes

Tags work as thread handles and should be regarded as instances of an opaque
type. The concept of thread handles can also be found on some Prolog multi-
threading implementations such as Ciao and on the ISO standardization proposal
in the specification of predicate thread create/3.

6.1 Non-deterministic Goals

Asynchronous calls are often deterministic. Typically, they are used for perform-
ing some lengthy computation without blocking other aspects of an applica-
tion. A common example is decoupling an interface from background computing
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threads. Nevertheless, Logtalk also allows non-deterministic asynchronous calls.
The basic idea is that a computing thread suspends itself after providing a
solution, waiting for a request for an alternative solution. For example, assuming
a lists object implementing a member/2 predicate, we could write:

| ?- threaded_call(lists::member(_, [1,2,3])).
yes

| ?- threaded_exit(lists::member(X, [1,2,3])).
X = 1 ;
X = 2 ;
X = 3 ;
no

In this case, the threaded call/1 and the threaded exit/1 calls are made within
the pseudo-object user, whose message queue is used internally to store computed
goal solutions. The implicit thread running the lists::member/2 goal suspends
itself after providing a solution, waiting for the request of an alternative solution;
the thread is automatically terminated when the runtime engine detects that
further backtracking to the threaded exit/1 call is no longer possible.

Supporting non-deterministic thread goals can be tricky as the thread is sus-
pended between requests for alternative solutions: if a new request never occurs,
the result could be a zombie thread. The current Logtalk implementation solves
this problem by taking advantage of the call cleanup/2 built-in predicate found
on a growing number of Prolog compilers. This predicate allows us to call a
clean-up goal as soon as the Prolog runtime detects that a goal is finished be-
cause it succeeded or failed deterministically or because its choice-points have
been cut6.

There is one caveat when using the threaded exit/1 predicate that a program-
mer must be aware of, especially when using this predicate within failure-driven
loops. When all the solutions have been found (and the thread generating them
is therefore terminated), further calls to the predicate will generate an exception
as the answering thread no longer exists. Note that failing instead of throwing
an exception is not an acceptable solution as it could be misinterpreted as a
failure of the thread goal.

For deterministic asynchronous calls, Logtalk provides a threaded once/1 built-
in predicate that is more efficient when there is only one solution or when you want
to commit to the first solution of the thread goal. In this case, the thread created
for proving a goal stores the first solution on the message queue of the object mak-
ing the threaded once/1 call and terminates. The solution thus becomes available
for later retrieval by a call to the threaded exit/1 predicate.

6 This functionality cannot be implemented at the Prolog level, making the availabil-
ity of this built-in predicate an additional requirement for running Logtalk multi-
threading applications with a specific back-end Prolog compiler. Standardization of
this predicate is currently being discussed.
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6.2 One-Way Asynchronous Calls

The built-in predicate threaded ignore/1 allows us to prove a goal in a new
thread without caring about the results. For example, assume that we are de-
veloping a multi-agent application where an agent may send an happy birthday
message to another agent. We could simply write:

..., threaded_ignore(agent::happy_birthday), ...

This call succeeds with no reply of the goal success, failure, or even exception
ever being sent back to the message queue object making the call (note that this
predicate implicitly implies a deterministic call of its argument).

7 Dealing with Side Effects: Synchronizing Predicate
Calls

Proving goals in a multi-threading environment may lead to problems when
the goals imply side-effects such as input/output operations or modifications
to an object database. For example, if a new thread is started with the same
goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures.

The usual solution for synchronizing calls is to use semaphores, mutexes, or
some other similar mechanism. In the case of the multi-threading ISO standard-
ization proposal, a set of built-in predicate for working with mutexes is already
specified. We could certainly use them to synchronize predicate calls. However,
working at this level, implies naming, locking, and unlocking mutexes. This is
a task best performed by the compiler and the language runtime rather than
the programmer who should only need to worry about declaring which predicate
calls should be synchronized.

In Logtalk, predicates (and grammar rule non-terminals) with side-effects can
be simply declared as synchronized by using either the synchronized/0 object
directive or the synchronized/1 predicate directive. Together, these two direc-
tives allows from object-level synchronization to predicate-level synchronization.
Proving a query to a synchronized predicate (or synchronized non-terminal) is
protected internally by a mutex, thus allowing for easy thread synchronization.

7.1 Object-Level Synchronization

The synchronized/0 object directive allows us to synchronize all object predicates
using the same mutex:

:- synchronized.

This directive provides the simplest possible synchronization solution; it is useful
for small objects where all or most predicates access the same shared resources.
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7.2 Predicate-Level Synchronization

When fine-grained synchronization is preferred, the synchronized/1 predicate
directive allows us to synchronize subsets of an object predicates or a single
object predicate. For example, the following two directives:

:- synchronized([write_buffer/1, read_buffer/1]).
:- synchronized(random/1).

will make calls to the write buffer/1 and read buffer/1 predicates synchronized
using the same mutex while the predicate random/1 will use a different mutex.

7.3 Synchronizing Predicate Calls Using Notifications

Declaring a set of predicates as synchronized can only ensure that they are not
executed at the same time by different threads. Sometimes we need to suspend
a thread not on a synchronization lock but on some condition that must hold
true for a thread goal to proceed. That is, we want a thread goal to be sus-
pended until a condition becomes true instead of simply failing. The built-in
predicate threaded wait/1 allows us to suspend a predicate execution (running
in its own thread) until a notification is received. Notifications are posted using
the built-in predicate threaded notify/1. A notification is a Prolog term that
a programmer chooses to represent some condition becoming true. Any Prolog
term can be used as a notification argument for these predicates. Related calls
to the threaded wait/1 and threaded notify/1 must be made within the same
object as its message queue is used internally for posting and retrieving notifi-
cations. Each notification posted by a call to the threaded notify/1 predicate is
consumed by a single threaded wait/1 predicate call, i.e. these predicates imple-
ment a peer-to-peer mechanism. Care should be taken to avoid deadlocks when
two (or more) threads both wait and post notifications to each other.

To see the usefulness of this notification mechanism consider the dining philoso-
phers problem [24]: five philosophers sitting at a round table, thinking and eating,
each sharing two chopsticks with its neighbors. Chopstick actions (picking up and
putting down) can be easily synchronized using a notification such that a chop-
stick can only be handled by a single philosopher at a time:

:- category(chopstick).

:- public([pick_up/0, put_down/0]).

pick_up :-
threaded_wait(available).

put_down :-
threaded_notify(available).

:- end_category.

There are five chopsticks, therefore we need to define the corresponding five
objects. The code of all of them is similar:
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:- object(cs1,
imports(chopstick)).

:- threaded.
:- initialization(threaded_notify(available)).

:- end_object.

Each philosopher is represented by a simple object that specifies the left and
right chopsticks. For example:

:- object(p2,
imports(philosopher)).

left_chopstick(cs2).
right_chopstick(cs3).

:- end_object.

Deadlock is avoided by using the classical solution of exchanging the left and
right chopsticks for one of the philosophers.

The full source code of this and other examples of the use of notifications
to synchronize threads are provided with the current Logtalk distribution for
the interested reader. Common usage patterns are generate-and-test scenarios
where size-limited buffers are used for intermediate storage of candidate solu-
tions. In these scenarios, a producer thread needs to suspend when the buffer
is full, waiting for the consumer thread to notify it of available spots. Likewise,
a consumer thread needs to suspends when the buffer is empty, waiting for the
producer thread to notify it that new items are available for consumption.

8 Performance

Preliminary tests show that the performance of Logtalk multi-threading applica-
tions scales as expected with the number of threads used, bounded by the number
of processing cores. The following table shows the relative speedup as we increase
the number of threads in three simple benchmark tests: calculating primes num-
bers and sorting lists using the merge sort and the quicksort algorithms. The
sorting examples allow some degree of scalability by using parametric threaded
objects whose parameter is the number of threads to use.

Benchmark · Number of threads 1 2 4
Prime numbers (in the interval [1, 500000]) 1.00 1.65 3.12

Merge sort (20000 float random numbers) 1.00 1.87 2.87

Quicksort (20000 float random numbers) 1.00 1.43 1.82

The corresponding multi-threading examples can be found on the current Log-
talk distribution. The tests are performed on an Apple MacPro Dual 3.0GHz
Dual-Core Intel Xeon 5100 with 2GB of RAM, running MacOS X 10.4.10. The
back-end Prolog compiler used was SWI-Prolog 5.6.37. Similar speedups are ob-
served with other Prolog compilers such as YAP and the current development
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version of XSB. Future work will look into quantifying the performance overhead
added by the Logtalk high-level multi-threading predicates when compared with
the core Prolog multi-threading predicates.

Use of multi-threading features is interesting for problems where the compu-
tation costs surpasses the overhead of thread creation and management. Part
of this overhead is operating-system dependent. For example, we found that,
on the hardware described above, Linux provide the fastest thread creation and
thread join results, followed by Windows XP SP2, and than MacOS X 10.4.
For practical applications, experimentation is necessary in order to fine-tune a
multi-threading solution given the problem complexity, the number of processing
cores, the back-end Prolog compiler, and the operating-system.

9 Related Work

Besides the Prolog compilers currently implementing the ISO standardization
proposal, a number of other Prolog compilers provide alternative implemen-
tations of multi-threading concepts. Two of these compilers are BinProlog and
Ciao Prolog, which we briefly discuss below. A prototype multi-threading version
of SICStus Prolog is described in [25]. Outside the scope of Prolog compilers,
Erlang [26,27] is one of the best known examples of declarative programming
languages supporting concurrent (and distributed) systems.

9.1 BinProlog

BinProlog provides a set of multi-threading built-in predicates, ranging from
simple, high-level predicates to lower-level predicates that give increasing control
to the programmer. As this paper deals essentially with high-level predicates, two
BinProlog predicates stand out. The predicate bg/1 allows a goal to be proved in
its own thread. The predicate synchronize/1 uses an implicit mutex to prevent
two threads of executing its argument concurrently.

Most BinProlog multi-threading examples use a blackboard for storing and
retrieving thread goal results. The programmer must use the blackboard explic-
itly. In contrast, the use of object message queues by Logtalk for exchanging
thread goal results is transparent to the programmer.

BinProlog supports thread synchronizing using thread guards. Thread guards,
which work as mutexes, can be generated by calling the new thread guard/1

predicate and used with the predicates thread wait/1, thread notify/1, and
thread notify all/1. Despite the name similarity, these predicates are quite dif-
ferent from the Logtalk threaded wait/1 and threaded notify/1 predicates where
notifications are arbitrary non-variable Prolog terms chosen by the programmer.

9.2 Ciao Prolog

Ciao Prolog supports a concept of engines, which are used for proving a goal us-
ing a separate set of memory areas. These engines can use an operating-system
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thread for proving a goal, therefore providing support for concurrency. Similar
to other Prolog compilers, goals are copied into engine, thus loosing variable
bindings. Ciao provides a set of predicates for managing engines that rely on the
use of goal identifiers to reference a specific engine. Goal identifiers play a role
similar to the thread identifiers found on other Prolog compilers. The Prolog
database is shared between threads and is used as the primary means of thread
communication and synchronization. Ciao makes use of concurrent predicates,
which are dynamic predicates that allow thread execution to be suspended until
a new clause is asserted. Ciao supports non-deterministic thread goals, providing
a eng backtrack/2 predicate to backtrack over thread goals. When a thread goal
fails, the engine is not automatically terminated; the programmer must explic-
itly call a eng release/1 predicate. This contrasts with Logtalk where a thread
is automatically terminated when the thread goal fails. It is possible that the
implementation in Ciao of a functionality similar to the one provided by the
call cleanup/2-3 predicate would also allow transparent engine release.

9.3 SWI-Prolog High-Level Multi-threading Library

Recent SWI-Prolog versions include a new high-level multi-threading library.
This library provides two predicates, concurrent/3 and first solution/3, which
provide functionality similar to the Logtalk predicate threaded/1. The predicate
concurrent/3 allows easy concurrent execution of a set of goals. The caveats
listed in the SWI-Prolog library documentation are basically the same that apply
to Logtalk and to every other Prolog compiler making a copy of a goal when
using a thread: users of this predicate are advised against using shared goal
variables. This seems to be more of a cautious advise for safe use the concurrent/3
predicate than an implementation limitation (note that both this SWI-Prolog
library and Logtalk rely on the same core multi-threading built-in predicates).
The predicate first solution/3 runs a set of goals concurrently and picks the
first one to complete, killing the other threads. This predicate shares with the
Logtalk threaded/1 predicate the same potential thread cancelation problem:
a thread may be in a state where no signals are being processed, delaying or
preventing thread cancelation. The SWI-Prolog library predicates allows the
user to specify a list of options that will be used by the underlying calls to
the core thread create/3 predicate. Thus, simpler predicates using the default
thread creation options are trivial to implement.

9.4 Java Threads

Java includes native support for multi-threading programming. It provides both
low- and high-level features for thread creation, communication, and synchro-
nization. Java threads are objects while Logtalk threads run object methods
(goals) concurrently. Logtalk allows several threads per object, which translates
to a programming model different from Java and other similar languages. While
Logtalk allows both object and fine-grained method (predicate) synchronization,
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Java synchronization support always translates to object locking.7 That is, Java
uses one lock per object while Logtalk can use one lock per object, one lock
per predicate, or one lock per group of predicates. In Java, two synchronized
methods cannot be executed at the same time, even if the actions of one method
do not need to be synchronized with the other. This limitation may be overcome
by using synchronized statements, each one using a different synchronization
object. In Logtalk, the programmer only needs to group the predicates that
must be synchronized together by using separate synchronization/1 directives.
Java supports thread cooperation using the wait(), notify(), and notifyAll()

methods; these methods need to be called inside a synchronized block or a syn-
chronized method to avoid deadlock from race conditions, making them cum-
bersome to use. The Java notifyAll() method allows notification of all waiting
threads, something that can be coded but is not built-in in the current version of
Logtalk. Logtalk threaded wait/1 and threaded notify/1 are arguably simpler,
though restricted to peer-to-peer functionality. Logtalk notifications are posted
into object message queues and thus are never missed due to race conditions,
avoiding a potential source of deadlock.

10 Conclusions and Future Work

Logtalk currently uses a Prolog system as a back-end compiler, including for
core multi-threading services. The features described in this paper could be
implemented at a lower level, arguably with some performance gains (e.g. by
minimizing the overhead of thread creation). The downside would be loosing the
broad compatibility of Logtalk with Prolog compilers. Although currently only
a small number of Prolog compilers provide the necessary interface to POSIX
threads (or a suitable emulation), we expect its number to grow in the future.

Logtalk shares with some Prolog implementations the goal of finding useful
high-level multi-threading primitives. Most high-level multi-threading predicates
are supported by the same or similar core, low-level features. Therefore, a con-
vergence and cross-fertilization of research results is expected and desirable. For
example, Logtalk predicates such as threaded/1 and the synchronized/0-1 direc-
tives would be useful even in plain Prolog. Further experimentation and real-
world usage will eventually show which high-level multi-threading predicates are
worthwhile to implement across systems.

Our current work focus on documenting functionality, developing program-
ming examples, and testing our implementation for robustness and compati-
bility across Prolog compilers and operating systems. The specification of the
multi-threading predicates and directives is considered stable. The Logtalk multi-
threading features will soon drop their experimental status to become available
for using in production systems.

Work on the ISO draft standard proposal for Prolog multi-threading support
[28] is progressing steadily. The current Logtalk implementation uses only a
small subset of the proposed thread predicates. An improved implementation
7 In Logtalk, this corresponds to using the synchronization/0 directive.



280 P. Moura, P. Crocker, and P. Nunes

may be possible using a more complete Prolog interface to POSIX threads. In
fact, the major reason for the Logtalk multi-threading features to be classified as
experimental is due to the lack of a final standard specification that can be relied
on for all the compliance testing necessary for writing robust portable code.
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Abstract. In this paper, we present an implementation of a modular
synthesizer in Haskell using Yampa. A synthesizer, be it a hardware in-
strument or a pure software implementation, as here, is said to be mod-
ular if it provides sound-generating and sound-shaping components that
can be interconnected in arbitrary ways. Yampa, a Haskell-embedded
implementation of Functional Reactive Programming, supports flexible,
purely declarative construction of hybrid systems. Since music is a hybrid
continuous-time and discrete-time phenomenon, Yampa is a good fit for
such applications, offering some unique possibilities compared to most
languages targeting music or audio applications. Through the presenta-
tion of our synthesizer application, we demonstrate this point and provide
insight into the Yampa approach to programming reactive, hybrid sys-
tems. We develop the synthesizer gradually, starting with fundamental
synthesizer components and ending with an application that is capable
of rendering a standard MIDI file as audio with respectable performance.

Keywords: Functional Reactive Programming, synchronous dataflow
languages, hybrid systems, computer music.

1 Introduction

A dynamic system or phenomenon is hybrid if it exhibits both continuous-time
and discrete-time behaviour at the chosen level of abstraction. Music is an in-
teresting example of a hybrid phenomenon in this sense. At a fundamental level,
music is sound: continuous pressure waves in some medium such as air. In con-
trast, a musical performance has some clear discrete aspects (along with contin-
uous ones): it consists of sequences of discrete notes, different instruments may
be played at different points of a performance, and so on.

There exist many languages and notations for describing sound or music and
for programming computers to carry out musical tasks. However, they mostly
tend to focus on either the discrete or the continuous aspects. Traditional mu-
sical notation, or its modern-day electronic derivatives such as MIDI files or
� This work is supported by EPSRC grant EP/D064554/1. Thanks to the anonymous
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domain-specific languages like Haskore [5], focus on describing music in terms
of sequences of notes. If we are interested in describing music at a finer level
of detail, in particular, what it actually sounds like, options include modelling
languages for describing the physics of acoustic instruments, various kinds of
electronic synthesizers, or domain-specific languages like Csound [14]. However,
the focus of synthesizer programming is the sound of a single note, and how that
sound evolves over time. The mapping between the discrete world of notes and
the continuous world of sound is hard-wired into the synthesizer, outside the
control of the programmer.

Here we take a more holistic approach allowing the description of both the
continuous and discrete aspects of music and musical applications; that is, an
approach supporting programming of hybrid systems. Yampa [4,10], an instance
of Functional Reactive Programming (FRP) in the form of a domain-specific
language embedded in Haskell, provides the prerequisite facilities. Our basic
approach is that of modular synthesis. Modular synthesizers were developed in
the late 1950s and early 1960s and offered the first programmatic way to de-
scribe sound. This was achieved by wiring together sound-generating and sound-
shaping modules electrically. Yampa’s continuous-time aspects serve this purpose
very well. Additionally we leverage Yampa’s capabilities for describing systems
with a highly dynamic structure, thus catering for the discrete aspects of music.
In this paper, we illustrate:

– how basic sound-generating and sound-shaping modules can be described
and combined into a simple monophonic (one note at a time) synthesizer;

– how a monophonic synthesizer can be constructed from an instrument de-
scription contained in a SoundFont file;

– how to run several monophonic synthesizer instances simultaneously, thus
creating a polyphonic synthesizer capable of playing Standard MIDI Files.

The resulting application renders the musical score in a given MIDI file using
SoundFont instrument descriptions. The performance is fairly good: a moder-
ately complex score can be rendered about as fast as it plays (with buffering).
All code is available on-line.1 In addition to what is described in this paper,
the code includes supporting infrastructure for reading MIDI files, for reading
SoundFont files, and for writing the result as audio files or streams (.wav).

The contribution of this work lies in the application of declarative hybrid
programming to a novel application area, and as an example of advanced declar-
ative hybrid programming. We believe it will be of interest to people interested
in a declarative approach to describing music and programming musical applica-
tions, to practitioners interested in advanced declarative hybrid programming,
and to educationalists seeking interesting and fun examples of declarative pro-
gramming off the beaten path. The importance of the latter is illustrated by the
DrScheme experience, where first-class images and appropriate reactive abstrac-
tions have enabled high-school students to very quickly pick up pure functional
programming through implementation of animations and games [3].

1 http://www.cs.nott.ac.uk/~ggg
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2 Yampa

In the interest of making this paper sufficiently self-contained, we summarize
the basics of Yampa in the following. For further details, see earlier papers on
Yampa [4,10]. The presentation draws heavily from the Yampa summary in [2].

2.1 Fundamental Concepts

Yampa is based on two central concepts: signals and signal functions. A signal
is a function from time to values of some type:

Signal α ≈ Time → α

Time is continuous, and is represented as a non-negative real number. The type
parameter α specifies the type of values carried by the signal. For example, the
type of an audio signal, i.e., a representation of sound, would be Signal Sample
if we take Sample to be the type of the varying quantity.2

A signal function is a function from Signal to Signal :

SF α β ≈ Signal α → Signal β

When a value of type SF α β is applied to an input signal of type Signal α,
it produces an output signal of type Signal β. Signal functions are first class
entities in Yampa. Signals, however, are not: they only exist indirectly through
the notion of signal function.

In order to ensure that signal functions are executable, we require them to be
causal : The output of a signal function at time t is uniquely determined by the
input signal on the interval [0, t]. If a signal function is such that the output at
time t only depends on the input at the very same time instant t, it is called
stateless. Otherwise it is stateful.

2.2 Composing Signal Functions

Programming in Yampa consists of defining signal functions compositionally
using Yampa’s library of primitive signal functions and a set of combinators.
Yampa’s signal functions are an instance of the arrow framework proposed by
Hughes [7]. Some central arrow combinators are arr that lifts an ordinary func-
tion to a stateless signal function, composition ≫, parallel composition &&&, and
the fixed point combinator loop. In Yampa, they have the following types:

arr :: (a → b) → SF a b
(≫) :: SF a b → SF b c → SF a c
(&&&) :: SF a b → SF a c → SF a (b, c)
loop :: SF (a, c) (b, c) → SF a b

2 Physically, sound is varying pressure, and it might come about as a result of the
varying displacement of a vibrating string, or the varying voltage of an electronic
oscillator. Here we abstract from the physics by referring to the instantaneous value
of a sound wave as a “sample”, as is conventional in digital audio processing.
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f

(a) arr f

gf

(b) f ≫ g

f

g

(c) f &&& g

f

(d) loop f

Fig. 1. Basic signal function combinators

We can think of signals and signal functions using a simple flow chart analogy.
Line segments (or “wires”) represent signals, with arrowheads indicating the
direction of flow. Boxes represent signal functions, with one signal flowing into
the box’s input port and another signal flowing out of the box’s output port.
Figure 1 illustrates the aforementioned combinators using this analogy. Through
the use of these and related combinators, arbitrary signal function networks can
be expressed.

2.3 Arrow Syntax

Paterson’s arrow notation [11] simplifies writing Yampa programs as it allows
signal function networks to be described directly. In particular, the notation
effectively allows signals to be named, despite signals not being first class values.
In this syntax, an expression denoting a signal function has the form:

proc pat → do
pat1 ← sfexp1−≺ exp1
pat2 ← sfexp2−≺ exp2
. . .
patn ← sfexpn−≺ expn

returnA−≺ exp

Note that this is just syntactic sugar : the notation is translated into plain Haskell
using the arrow combinators.

The keyword proc is analogous to the λ in λ-expressions, pat and pat i are
patterns binding signal variables pointwise by matching on instantaneous signal
values, exp and expi are expressions defining instantaneous signal values, and
sfexpi are expressions denoting signal functions. The idea is that the signal being
defined pointwise by each expi is fed into the corresponding signal function
sfexpi, whose output is bound pointwise in pat i. The overall input to the signal
function denoted by the proc-expression is bound pointwise by pat , and its
output signal is defined pointwise by the expression exp. An optional keyword
rec allows recursive definitions (feedback loops).

For a concrete example, consider the following:

sf = proc (a, b) → do
(c1 , c2 ) ← sf1 &&& sf2 −≺ a
d ← sf3 ≪ sf4−≺ (c1 , b)
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rec
e ← sf5−≺ (c2 , d , e)

returnA−≺ (d , e)

Note the use of the tuple pattern for splitting sf ’s input into two “named signals”,
a and b. Also note the use of tuple expressions and patterns for pairing and
splitting signals in the body of the definition; for example, for splitting the
output from sf1 &&& sf2 . Also note how the arrow notation may be freely mixed
with the use of basic arrow combinators.

2.4 Events and Event Sources

To model discrete events, we introduce the Event type:

data Event a = NoEvent | Event a

A signal function whose output signal is of type Event T for some type T is
called an event source. The value carried by an event occurrence may be used
to convey information about the occurrence. The operator tag is often used to
associate such a value with an occurrence:

tag :: Event a → b → Event b

2.5 Switching

The structure of a Yampa system may evolve over time. These structural changes
are known as mode switches. This is accomplished through a family of switching
primitives that use events to trigger changes in the connectivity of a system. The
simplest such primitive is switch:

switch :: SF a (b,Event c) → (c → SF a b) → SF a b

The switch combinator switches from one subordinate signal function into an-
other when a switching event occurs. Its first argument is the signal function
that initially is active. It outputs a pair of signals. The first defines the overall
output while the initial signal function is active. The second signal carries the
event that will cause the switch to take place. Once the switching event occurs,
switch applies its second argument to the value tagged to the event and switches
into the resulting signal function.

Yampa also includes parallel switching constructs that maintain dynamic col-
lections of signal functions connected in parallel [10]. We will come back to this
when when we discuss how to construct a polyphonic synthesizer.

3 Synthesizer Basics

A modular synthesizer provides a number of sound-generating and sound-shaping
modules. By combining these in appropriate ways, various types of sounds can
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f w(ft)
VCO

(a) VCO: f is the control voltage that de-
termines the oscillator frequency; w deter-
mines the waveform.

(b) Examples of VCO
waveforms.

Fig. 2. Voltage Controlled Oscillator (VCO)

be realized, be they sounds that resemble different acoustic instruments such
as string or brass, or completely new ones. Such a configuration of modules is
known as a patch. Non-modular synthesizers are structured in a similar way,
except that the the module configuration to a large extend is predetermined. In
this section we introduce some basic synthesizer modules, explain their purpose,
and implement some simple ones in Yampa.

3.1 Oscillators

An oscillator is what generates the sound in a synthesizer. As it is necessary to
vary the frequency in order to play music, some form of dynamic tuning function-
ality is needed. Traditionally, this was done by constructing electronic oscillators
whose fundamental frequency could be determined by a control voltage. Such a
circuit is known as a Voltage Controlled Oscillator (VCO): see Fig. 2(a).

There are many choices for the actual waveform of the oscillator, indicated
by the function w in Fig. 2(a). Typically w is some simple periodic function, like
the ones in Fig. 2(b): sine and sawtooth. However, w can also be a recording
of some sound, often an acoustic instrument. The latter kind of oscillator is the
basis of so called sample3-based or wavetable synthesizers.

As a first example of using Yampa for sound synthesis, let us implement a sim-
ple sine wave oscillator with dynamically controllable frequency. The equations
for a sine wave with fixed frequency f are simply

φ = 2πft (1)
s = sin(φ) (2)

However, we want to allow the frequency to vary over time. To obtain the angle
of rotation φ at a point in time t, we thus have to integrate the varying angular
frequency 2πf from 0 to t. We obtain the following equations:

φ = 2π

t∫
0

f(τ) dτ (3)

s = sin(φ) (4)
3 “Sample” is an overloaded term. Depending on context, it can refer either to the

sampled, instantaneous value of a signal, or to a recording of some sound. In a digital
setting, the latter is a sequence of samples in the first sense.
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Let us consider how to realize this. Our sine oscillator becomes a signal func-
tion with a control input and an audio output. We will use the type CV (for
Control Value) for the former, while the type of the latter is just Sample as
discussed in Sect. 2.1. Further, we want to parameterize an oscillator on its
nominal frequency. Thus, our oscillator will become a function that given the
desired nominal frequency f0 returns a signal function whose output oscillates
at a frequency f that can be adjusted around f0 through the control input:

oscSine :: Frequency → SF CV Sample

Following common synthesizer designs, we adopt the convention that increas-
ing the control value by one unit should double the frequency (up one octave),
and decreasing by one unit should halve the frequency (down one octave). If we
denote the time-varying control value by cv(t), we get

f(t) = f02cv(t) (5)

We can now define oscSine by transliterating equations 3, 4, and 5 into Yampa
code:

oscSine :: Frequency → SF CV Sample
oscSine f0 = proc cv → do

let f = f0 ∗ (2 ∗∗ cv)
phi ← integral−≺ 2 ∗ pi ∗ f
returnA−≺ sin phi

Note that time is implied, so unlike the equations above, signals are never ex-
plicitly indexed by time.

In traditional synthesizers, there is a second class of oscillators known as Low
Frequency Oscillators (LFO) which are used to generate time-varying control
signals. However, our oscSine works just as well at low frequencies. Let us use
two sine oscillators where one modulates the other to construct an oscillator
with a gentle vibrato:

constant 0 ≫ oscSine 5.0 ≫ arr (∗0.05) ≫ oscSine 440

Figure 3 illustrates this patch graphically.

0
oscSine 5.0 oscSine f*0.05

Fig. 3. Modulating an oscillator to obtain vibrato
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3.2 Amplifiers

The next fundamental synthesizer module is the variable-gain amplifier. As the
gain traditionally was set by a control voltage, such a device is known as a
Voltage Controlled Amplifier (VCA). See Fig. 4. VCAs are used to dynamically
control the amplitude of audio signals or control signals; that is, multiplication
of two signals, where one often is a low-frequency control signal.

x(t) a·x(t)
VCA

a

Fig. 4. Voltage Controlled Amplifier (VCA)

An important application of VCAs is to shape the output from oscillators in
order to create musical notes with a definite beginning and end. The approach
used is to derive a two-level control signal from the controlling keyboard called
the gate signal. It is typically positive when a key is being pressed and 0 V
otherwise. By deriving a second control signal from the keyboard proportional
to which key is being pressed, feeding this to a VCO, feeding the output from
the VCO to the input of a VCA, and finally controlling the gain of the VCA by
the gate signal, we have obtained a very basic but usable modular synthesizer
patch with an organ-like character: see Fig. 5.

f
VCO VCA

g

Fig. 5. Basic synthesizer patch: f controls the frequency, g is the gate signal

Since the conceptual operation of a VCA is just multiplication of signals,
implementation in Yampa is, of course, entirely straightforward.

3.3 Envelope Generators

When acoustic instruments are played, it often takes a discernable amount of
time from starting playing a note until the played note has reached full volume.
This is known as the attack. Similarly, a note may linger for a while after the end
of the playing action. How the volume of a note evolves over time, its envelope,
is a very important characteristic of an instrument. In Sect. 3.2, we saw how a
patch with an organ-like envelope could be obtained by controlling a VCA with
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Fig. 6. Envelope generation

the gate signal. To play notes with other types of envelopes, we need to control
the VCA with a control signal that mirrors the desired envelope.

An envelope generator is a circuit that is designed to allow a variety of musi-
cally useful envelopes to be generated. Figure 6(a) shows a classic ADSR enve-
lope. The first phase is the Attack (A). Immediately after a key has been pressed,
the control signal grows to its maximal value at a programmable rate. Once the
maximal value has been reached, the envelope generator enters the second phase,
Decay (D). Here, the control signal decreases until it reaches the sustain level.
The third phase is Sustain (S), and the envelope generator will remain there
until the key is released. It then enters the fourth phase, Release (R), where the
control signal goes to 0. If the key is released before the sustain phase has been
reached, the envelope generator will proceed directly to the release phase.

This kind of behaviour is easily programmable in Yampa. An envelope signal
with segments of predetermined lengths can be obtained by integrating a step
function like the one in Fig. 6(b). Progression to the release phase upon reception
of a note-off event is naturally implemented by means of switching from a signal
function that describes the initial part of the envelope to one that describes
the release part in response to such an event since the release of a key does
not happen at a point in time known a priori. Note how the hybrid capabilities
of Yampa now start to come in very handy: envelope generation involves both
smoothly evolving segments and discrete switching between such segments.

To illustrate, we sketch the implementation of a generalized envelope generator
with the following signature:

envGen :: CV → [(Time ,CV )] → Maybe Int
→ SF (Event ()) (CV ,Event ())

The first argument gives the start level of the desired envelope control signal.
Then follows a list of time and control-value pairs. Each defines a target control
level and how long it should take to get there from the previous level. The
third argument specifies the number of the segment before which the sustain
phase should be inserted, if any. The input to the resulting signal function is
the note-off event that causes the envelope generator to go from the sustain
phase to the following release segment(s). The output is a pair of signals: the
generated envelope control signal and an event indicating the completion of the
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last release segment. This event will often occur significantly after the note-off
event and is useful for indicating when a sound-generating signal function should
be terminated.

Let us first consider a signal function to generate an envelope with a prede-
termined shape:

envGenAux :: CV → [(Time ,CV )] → SF a CV
envGenAux l0 tls = afterEach trs ≫ hold r0 ≫ integral ≫ arr (+l0 )

where
(r0 , trs) = toRates l0 tls

The auxiliary function toRates converts a list of time and level pairs to a list
of time and rate pairs. Given such a list of times and rates, the signal function
afterEach generates a sequence of events at the specified points in time. These are
passed through the signal function hold that converts a sequence of events, i.e.
a discrete-time signal, to a continuous-time signal. The result is a step function
like the one shown in Fig. 6(b). By integrating this, and adding the specified
start level, we obtain an envelope signal of the specified shape.

We can now implement the signal function envGen. In the case that no sustain
segment is desired, this is just a matter pairing envGenAux with an event source
that generates an event when the final segment of the specified envelope has been
completed. The time for this event is obtained by summing the durations of the
individual segments:

envGen l0 tls Nothing = envGenAux l0 tls &&& after (sum (map fst tls)) ()

If a sustain segment is desired, the list of time and level pairs is split at the
indicated segment, and each part is used to generate a fixed-shape envelope
using envGenAux . Yampa’s switch primitive is then employed to arrange the
transition from the initial part of the envelope to the release part upon reception
of a note-off event:

envGen l0 tls (Just n) =
switch (proc noteoff → do

l ← envGenAux l0 tls1−≺ ()
returnA−≺ ((l ,noEvent),noteoff ‘tag ‘ l))

(λl → envGenAux l tls2 &&& after (sum (map fst tls2 )) ())
where

(tls1 , tls2 ) = splitAt n tls

Note how the level of the generated envelope signal at the time of the note-off
event is sampled and attached to the switch event (the construction noteoff ‘tag ‘
l). This level determines the initial level of the release part of the envelope to
avoid any discontinuity in the generated envelope signal.

3.4 A Simple Modular Synthesizer Patch

Let us finish this synthesizer introduction with a slightly larger example that
combines most of the modules we have encountered so far. Our goal is a
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oscSine f*0.05

envBell

oscSine 5.0

Fig. 7. Vibrato and bell-like envelope

synthesizer patch that plays a note with vibrato and a bell-like envelope (fast
attack, gradual decay) in response to events carrying a MIDI note number; i.e.,
note-on events.

Let us start with the basic patch. It is a function that when applied to a note
number will generate a signal function that plays the desired note once:

playNote :: NoteNumber → SF a Sample
playNote n = proc → do

v ← oscSine 5.0 −≺ 0.0
s ← oscSine (toFreq n)−≺ 0.05 ∗ v
(e, ) ← envBell −≺ noEvent
returnA−≺ e ∗ s

envBell = envGen 0.0 [(0.1, 1.0), (1.5, 0.0)] Nothing

Figure 7 shows a graphical representation of playNotes .
The auxiliary function toFreq converts from MIDI note numbers to frequency,

assuming equal temperament:

toFreq :: NoteNumber → Frequency
toFreq n = 440 ∗ (2 ∗∗ (((fromIntegral n) − 69.0) / 12.0))

Next we need to arrange that to switch into an instance of playNote whenever
an event carrying a note number is received:

playNotes :: SF (Event NoteNumber) Sample
playNotes = switch (constant 0.0&&& identity)

playNotesRec
where

playNotesRec n =
switch (playNote n &&& notYet) playNotesRec

The idea here is to start with a signal function that generates a constant 0 audio
signal. As soon as a first event is received, we switch into playNotesRec. This
plays the note once. Meanwhile, we keep watching the input for note-on events
(except at time 0, when notYet blocks any event as playNotesRec otherwise
would keep switching on the event that started it), and as soon as an event
is received we switch again, recursively, into playNotesRec, thus initiating the
playing of the next note. And so on.
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4 A SoundFont-Based Monophonic Synthesizer

The SoundFont format is a standardized way to describe musical instruments. It
is a sample-based format, i.e. based on short recordings of actual instruments, but
it also provides true synthesizer capabilities through a network of interconnected
modules of the kind described in Sect. 3. In this section, we sketch how to turn
a SoundFont description into a monophonic synthesizer using Yampa.

4.1 Implementing a Sample-Based Oscillator

We first turn our attention to implementing an oscillator that uses recorded
waveforms or samples. A SoundFont file contains many individual samples (often
megabytes of data), each a recording of an instrument playing some particular
note. Along with the actual sample data there is information about each sample,
including the sampling frequency, the fundamental (or native) frequency of the
recorded note, and loop points. The latter defines a region of the sample that
will be repeated to allow notes to be sustained. Thus samples of short duration
can be used to play long notes.

In our implementation, data for all the samples is stored in a single array:

type SampleData = UArray SamplePointIndex Sample
type SamplePointIndex = Word32

Note that the type Sample here refers to an instantaneous sample value, as
opposed to an entire recording. Information about individual samples are stored
in records of type SampleInfo. In addition to the information already mentioned,
these also store the start and end index for each sample.

A sample-playing oscillator can now be defined in much the same way as the
sine oscillator from Sect. 3.1, the main difference being that the periodic function
now is given by table lookup and linear interpolation:

oscSmplAux :: Frequency → SampleData → SampleInfo
→ SF CV (Sample,SamplePointIndex )

oscSmplAux freq sdta sinf = proc cv → do
phi ← integral−≺ freq / (smplFreq sinf ) ∗ (2 ∗∗ cv )
let (n, f ) = properFraction (phi ∗ smplRate sinf )

p1 = pos n
p2 = pos (n + 1)
s1 = sdta ! p1
s2 = sdta ! p2

returnA−≺ (s1 + f ∗ (s2 − s1 ), p2 )
where

pos n = ...

The local function pos converts a sample number to an index by “wrapping
around” in the loop region as necessary. In addition to the instantaneous sample
value, the oscillator also outputs the current sample index. This enables a smooth
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Fig. 8. The SoundFont synthesis model

transition to the release segment of a sample (after the loop region) when a note-
off event is received.

Finally, we can define a complete oscillator that takes care of the transition
to the release segment on a note-off event through switching from oscSmplAux
to an oscillator that plays the release segment. We only give the type signature:

oscSmpl :: Frequency → SampleData → SampleInfo
→ SF (CV ,Event ()) Sample.

4.2 Combining the Pieces

Given the sample-based oscillator, a complete SoundFont synthesizer can be ob-
tained by wiring together the appropriate modules according to the SoundFont
synthesis model shown in Fig. 8, just like the simple monophonic synthesizer was
constructed in Sect. 3.4. The SoundFont model does include filters. While not con-
sidered in this paper, filters can easily be realized using Yampa’s unit delays [12].

In our case, we also choose to do the MIDI processing at this level. Each
monophonic synthesizer is instantiated to play a particular note at a particular
MIDI channel at some particular strength (velocity). The synthesizer instance
continuously monitors further MIDI events in order to identify those relevant to
it, including note-off events to switch to the release phase and any articulation
messages like pitch bend. This leads to the following type signature, where the
output event indicates that the release phase has been completed and the playing
of a note thus is complete:

type MonoSynth = Channel → NoteNumber → Velocity
→ SF MidiEvent (Sample,Event ()).

5 A Polyphonic Synthesizer

In this section, we consider how to leverage what we have seen so far in order to
construct a polyphonic synthesizer capable of playing standard MIDI files.
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5.1 Dynamic Synthesizer Instantiation

The central idea is to instantiate a monophonic synthesizer in response to every
note-on event, and then run it in parallel with any other active synthesizer
instances until the end of the played note. Yampa’s parallel switching construct
[10] is what enables this dynamic instantiation:

pSwitchB :: Functor col ⇒
col (SF a b) -- Initial signal func. collection
→ SF (a, col b) (Event c) -- Event source for switching
→ (col (SF a b) → c → SF a (col b)) -- Signal function to switch into
→ SF a (col b)

The combinator pSwitchB is similar to switch described in Sect. 2.5, except that

– a collection of signal functions are run in parallel
– a separate signal function is used to generate the switching event
– the function computing the signal function to switch into receives the col-

lection of subordinate signal functions as an extra argument.

The latter allows signal functions to be independently added to or removed from
a collection in response to note-on and monosynth termination events, while
preserving the state of all other signal functions in the collection.

The overall structure of the polyphonic synthesizer is shown in Fig. 9. The
signal function triggerChange generates a switching event when reconfiguration
is necessary (i.e. when adding or removing monosynth instances). The func-
tion performChange computes the new collection of monosynth instances after
a switch. The output signal from the parallel switch is a collection of samples
at each point in time, one for every running monosynth instance. This can be
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Fig. 9. Overall structure of the polyphonic synthesizer
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seen as a collection of audio signals. The signal function mixer sums all these
samples into a single audio signal.

5.2 Performance

Despite being implemented in a very straightforward (almost naive) way, the
performance of the polyphonic synthesizer is reasonable. For example, using
modern hardware (1.8 GHz Intel dual core) and compiling using GHC, a moder-
ately complex score like Mozart’s Rondo Alla Turca, can be rendered as fast as
it plays at 22 kHz sampling rate using a SoundFont4 piano definition. However,
an audio buffer is needed between the synthesizer process and the audio player
to guard against garbage collection pauses and the like: thus, the latency is high.

6 Related Work

Haskore [5] is a language for programming music embedded in Haskell. Its fun-
damental design resembles traditional musical scores, but as it is an embedding
in Haskell, Haskell can be used for “meta programming”. Haskore itself does
not deal with defining instruments, but see the discussion of HasSound below.
Describing musical scores was not our focus in this work. Haskore could clearly
be used to that end, being a Haskell embedding just like Yampa. Since our
framework provides an interface to MIDI and MIDI files, any application capa-
ble of generating MIDI could in principle be used as a frontend. However, one
could also explore implementing “score-construction” abstraction directly in the
Yampa framework. An interesting aspect of that would be that there is no firm
boundary between the musical score and the sounds used to perform it. One
could also imagine interactive compositions, as Yampa is a reactive program-
ming language.

Csound is a domain-specific language for programming sound and musical
scores [14]. Fundamentally, it is a modular synthesizer, enabling the user to
connect predefined modules in any conceivable manner. It is possible to extend
Csound with new modules, but these have to be programmed in the underlying
implementation language: C. Thanks to its extensibility, Csound now provides a
vast array of sound generating and sound shaping modules. Obviously, what we
have done in this paper does not come close to this level of maturity. However, we
do claim that our hybrid setting provides a lot of flexibility in that it both allows
the user to implement basic signal generation and processing algorithms as well
as higher-level discrete aspects in a single framework, with no hard boundaries
between the levels.

HasSound [6] is a domain-specific language embedded in Haskell for defining
instruments. It is actually a high-level frontend to Csound: HasSound definitions
are compiled to Csound instrument specifications. Therein lies both HasSound’s
strength and weakness. On the one hand, HasSound readily provides access to
lots of very sophisticated facilities from Csound. On the other hand, the end
4 http://www.sf2midi.com/index.php?page=sdet&id=8565
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result is ultimately a static Csound instrument definition: one cannot do anything
in HasSound that cannot (at least in principle) be done directly in Csound. The
approach taken in this paper is, in principle, more flexible.

Low-level audio processing and sound-generation in Haskell has also been done
earlier. For example, Thielemann [13] develops an audio-processing framework
based on representing signals as co-recursively defined streams. However, the
focus is on basic signal processing, not on synthesis applications.

Karczmarczuk [8] presents a framework with goals similar to ours using a
stream-based signal representation. Karczmarczuk focuses on musically relevant
algorithms and present a number of concise realizations of physical instrument
simulations, including the Karplus-Strong model of a plucked string [9], reverb,
and filters. He also presents an efficient, delay-based sine oscillator, and does
consider how to modulate its frequency by another signal to create vibrato.

However, Karczmarczuk’s framework, as far as it was developed in the paper,
lacks the higher-level, discrete facilities of Yampa, and the paper does not con-
sider how to actually go about programming the logic of playing notes, adding
polyphony5, etc. Also, the arrow framework offers a very direct and intuitive
way to combine synthesizer modules: we dare say that someone familiar with
programming modular synthesizers would feel rather at home in the Yampa set-
ting, at least as long as predefined modules are provided. The correspondence is
less direct in Karczmarczuk’s framework as it stands.

7 Conclusions

FRP and Yampa address application domains that have not been traditionally
associated with pure declarative programming. For example, in earlier work we
have applied Yampa to video game implementation [2], and others have since
taken those ideas much further [1]. In this paper, we have applied Yampa to
another domain where pure declarative programming normally is not consid-
ered, modular synthesis, arguing that the hybrid aspects of Yampa provides a
particularly good fit in that we can handle both low-level signal processing and
higher-level discrete aspects, including running many synthesizer instances in
parallel to handle polyphony. We saw that Yampa’s parallel, collection-based
switch construct [10] was instrumental for achieving the latter. We also think
that being able to do all of this seamlessly in a single framework opens up in-
teresting creative possibilities.

As it stands, our framework is mainly a proof of concept. Nevertheless, we feel
that the Yampa style of programming is immediately useful in an educational
context as it makes it possible to implement interesting examples from somewhat
unexpected domains in an intuitive, concise, and elegant manner, thus providing
an incentive to learn pure declarative programming. We note that others have
had similar experiences with related approaches [3].
5 Summing a fixed number of streams to play more than one note is, of course, straight-

forward. But polyphonic performance requires independent starting and stopping of
sound sources.
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Abstract. More and more software systems use a browser as the univer-
sal graphical user interface. As a consequence these applications inherit
browser navigation as part of their interface. Typical browser actions are
the use of the back- and forward-button and the cloning of windows.
Browser navigation is difficult to deal with because it has effects that
are noticed indirectly by the application logic. It is easy to forget or
misunderstand the consequences of this aspect in the construction of a
program. Hence, testing the correct behavior of the application is very
desirable, preferably with an automatic model-based test tool. For this
kind of model-based testing a specification including browser navigation
is needed. We introduce a transformation to lift the specification of a pro-
gram without browser navigation to one with browser navigation. This
reduces the specification effort considerably. The distinguishing feature
of our method is that it allows the test engineer to specify only the ex-
ceptions to the general rule. We show how this lifting of specifications
is used for some examples and how errors are found in real web applica-
tions. The described system builds on the model-based test tool G∀ST.

1 Introduction

Equipping software systems with an HTML-based browser interface has many
advantages: the interface becomes platform independent, the look and feel is
familiar to new users, and it is often less work to implement a browser based
GUI instead of some traditional GUI library. Moreover, the new application ob-
tains browser navigation (cloning of windows and the possibility to go back and
forward between previous states of the GUI) for free. The browsers provide this
new GUI navigation without any help from the web application by maintaining
a stack of previous pages. The possibility to review previous states in the inter-
action can be very convenient for the user. It is even possible to go to a previous
page and give a new input in that state of the GUI to investigate several options
or to undo mistakes.

A consequence of using a browser as GUI is that the application, and hence
its state, becomes divided between the browser (handling rendering and browser
navigation) and the web application (handling the events and all other interfaces
of the program) on the server. In thick-clients the browser handles even a larger
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part of the application by executing (Java) scripts, but that is outside the scope
of this paper. We focus on thin client web applications. By returning to a previous
page the current part of the state stored at the client site is replaced by a
previous version as well. Since the web application at the server is unaware of
this browser navigation, the part of the state stored at the server is unaffected.
Whether some part of the state should be changed on browser navigation is
problem dependent. Parts of the state representing actions or objects in the real
world, like purchases in a web shop, can usually not be undone by the user.
Hence these parts of the state should not be changed by going to a previous
page, this is achieved by storing them on the server. Other parts of the state,
like the contents of the basket in a web shop, can safely be changed by browser
navigation and hence should be stored in the page. Storing some part of the
state at the wrong place is usually harmless without browser navigation, but
using browser navigation reveals the problem, see also [4]. Hence, it is desirable
to include browser navigation in the tests of software with a web interface.

In this paper we extend our approach for model-based testing of web app-
lications [6] to the additional behavior imposed by browser navigation. A web
application to be tested is modeled by an extended state machine. The test
system automatically determines conformance between the web application and
its model by generating inputs. The corresponding output is checked by the test
system using the model. Many other existing models used for testing browser
navigation, like [1], cover only the input elements available in the web-page and
are not able to check the correctness of the new page obtained.

The effects of browser navigation on the models needed for testing are severe.
Even if the original implementation under test, iut, can be adequately modeled
by a finite state machine, an infinite state machine is needed for testing with
browser navigation buttons. Each state in the model without browser naviga-
tion has to be replaced by an unbounded number of states where the difference
between those states is the history of previous pages reachable with the back-
button and the forward-button. It would be tedious if the behavior corresponding
to this browser directed navigation must be specified for each and every system.
Fortunately the behavior is very similar, but not necessarily identical, for most
web applications. This enables us to define a model transformer that adds de-
fault behavior for the back and forward-button to each state in the model. We
have chosen to take the model where all state information is local in the current
web page as the default. This default corresponds to the browsing of simple old
fashioned web-pages. If other behavior is required for specific states or inputs,
the test engineer has to specify only the exceptions to the default behavior.

The organization of this paper is as follows. Section 2 rephrases testing of
thin-client web applications in order to make this paper more self contained.
In section 3 we elaborate on the special behavior associated with the back-
and forward-button. Section 4 introduces a general model transformer to turn
a model of a web application without browser navigation into a model with
default behavior for the back- and forward-button. This is illustrated by two
simple examples, for the first one (section 4.1) the automatic transformation
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does everything wanted, for the second example (section 4.2) exceptions of the
default behavior are specified. Other forms of browser navigation are briefly
touched in section 5. In section 6 we discuss related work. Finally we draw
conclusions.

2 Model Based Testing of Thin Client Web Applications

In this paper we use the automatic model-based test tool G∀ST [5]. G∀STuses
functions in the functional programming language Clean1 [8] as specification.
Distinguishing features of G∀ST are the fully automatic generation of tests, their
execution and the generation of verdicts. Input generation for arbitrary types
can be derived automatically using generic programming as well as specified
explicitly by the test engineer.

Reactive systems such as web applications are modeled with an Extended

State Machine, ESM. An individual transition is written as s
i/o−−→ t, where s

is the source state, t is the target state, i is the input value, and o the asso-
ciated output. An ESM is similar to a Mealy Finite State Machine, FSM, but
can have an infinite number of states, inputs and outputs. Moreover, an ESM
can be nondeterministic, i.e. there can be multiple transitions for each state and
input. Sometimes the output determines the target state, but there exist also

systems with transitions s
i/o−−→ t1 and s

i/o−−→ t2 for some s, i and o with t1 �= t2.
From a single source state s there exist two (or more) transitions with identical
labels (input and output), but different target states. An ESM used as specifi-
cation in model-based testing can be nondeterministic for two reasons. Either
the system specified is nondeterministic, or the system is deterministic but there
is incomplete state information in the specification. Consider for instance the
purchase of an item from a webstore. If the goods in stock are unknown in the
specification, the model has to allow the response to situation where the item is
in stock as well as the situation where the item is not available. The webstore
itself will be deterministic; if the item is available it will be sold. The specifica-
tion of this transition in model-based testing however, must be nondeterministic
due to the incomplete state information. Such a situation with incomplete state
information in the specification is common in model-based testing.

A specification is partial if there is a combination of a reachable state and
a valid input that does not occur in any of the specified transitions. The con-
formance relation defined in section 2.1 states that any behavior of the system
under test is allowed if the specification does not cover the current state and
input. Since anything is allowed, testing such a transition is useless. G∀ST is
able to handle these partial specifications.

For the specification of a web application the state can be freely chosen by the
test engineer. The type HtmlInput represents input elements in a web-page like:
buttons, links, drop-down lists and edit-boxes. One can use any desired type for

1 See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf for the
main differences between Clean and Haskell.

http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf
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inputs in the model if one provides an instance of the class transInput i : : i →
HtmlInput for that type. Using a tailor made type instead of HtmlInput is convenient
in the generation of test data. For instance, the test engineer can construct a data
type to generate only integers values between 0 and 10, and define an instance of
transInput that puts these values in the desired edit-box. The output is always an
element of type Html. This type is an abstract syntax tree for HTML-code rather
than a textual representation. We reuse the type for HTML from the iData toolkit
[7], Clean’s tool for generic web-page generation.

For the specification of the output of a web application we do not want to spec-
ify the HTML after each input completely. That would be much too detailed and

restrictive. Instead of modeling a single transition s
i/o−−→ t by a tuple (s, i, o, t)

and the entire specification δr by a set of tuples δr ⊆ S×I×O∗×S, we use a func-
tion. This specification function δF takes the current state and input as argument
and yields a function that takes the output of the web application as argument
and yields the set of allowed target states. In this way, the output can be used
to determine the target states. Instead of a single function, δF yields a list of
functions. Hence, the type of the specification is δF (s, i) ∈ S×I → P(O∗ → PS).
In this representation the empty set conveniently models partial specifications.
The set of functions is convenient in the composition and transformation of
specifications as shown below. Moreover, in this representation it is much easier
to determine the set of inputs that are allowed in a state s (the init defined
below) then in a representation of the specification as a function δF of type
S × I → O∗ → PS). Mathematically these types of specifications are equivalent,
but for a test system the first version is much more convenient. Finally, this
representation makes it easier to mix it with the existing specification format
used by G∀ST where one specifies the combinations of outputs and target states
S × I → P(O∗ × S).

A specification of the form S × I → P(O∗ × S) is similar to a classical Mealy
machine were the output function S × I → P(O∗) and state transition function
S × I → PS are joined to a single function. Classical Mealy machines are deter-
ministic, i.e. these functions have types S × I → O∗ and S × I → S. Moreover,
classical Mealy machines handle finite state machines, that is the sets S, I, and
O should be finite. For a nondeterministic specification it is essential to join the
output and transition function to a single specification function in order to make
the connection between outputs and target state on nondeterministic transitions.
Using functions of type S × I → P(O∗ → PS) for the specification instead of
functions yielding a list of tuples has as advantage that is is possible to use a
small function as specification instead of a very long list of tuples. In the speci-
fication of a web application the type O represents the HTML-pages allowed. In
general one does not want to specify the produced output of a web application
until the last bit of the HTML output. Details like the background color of the
page are usually completely irrelevant and one does not want to specify those
particulars. Listing all allowed outputs would at least be nasty and annoying. In
such situations a function of type S×I → P(O∗ → PS) is much more convenient,
the functions O∗ → PS can implement a predicate over the produced HTML. Of
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course it is still possible to model a finite state machine in this representation. If
the web application at hand should be a finite state machine, we can still test it
as a finite state machine. In general the web application is modeled as an ESM,
which shows richer behavior.

For a single transition our specification reads: s
i/o−−→ t ⇔ ∃f ∈ δF (s, i) ∧ t ∈

f(o). For web applications the functions f yielded by δF (s, i) are predicates over
the HTML output of the web application. Such a predicate typically verifies some
key aspects of a web-page, like the availability of buttons and specific text fields.
We show some examples in section 4.1.

Although technically superfluous, it turns out to be convenient to have the
possibility to specify one additional predicate P relating the output and target
state in each and every transition. This predicate checks whether the combination

of HTML and target state is well formed2. That is s
i/o−−→ t ⇔ ∃f ∈ δF (s, i) ∧ t ∈

f(o) ∧ P (o, t).
The set of inputs allowed in a state s is init(s) ≡ {i|δF (s, i) �= ∅}. A trace is

a sequence of inputs and associated outputs from some start state. The empty
trace connects a state to itself: s

ε⇒ s. A trace s
σ⇒ t can be extended with a

transition t
i/o−−→ u to the trace s

σ;i/o
=⇒ u. If we are not interested in the target

state we write s
i/o−−→ ≡ ∃t.s

i/o−−→ t or s
σ⇒ ≡ ∃t.s

σ⇒ t. All traces from state
s are: traces(s) = {σ|s σ⇒}. All reachable states after a trace σ from state s

are: s after σ ≡ {t|s σ⇒ t}. We overload traces, init, and after for sets of states
instead of a single state by taking the union of the individual results. When the
transition function, δF , to be used is not clear from the context, we add it as
subscript to the operator.

2.1 Conformance

Here the implementation under test, iut, is a web application. The iut is modeled
as a black box transition system. One can observe its traces, but not its state.
The iut and its specification need not have identical input output behavior in all
situations to say that the web application conforms to the specification.

Conformance of the iut to the specification spec is defined as:

iut conf spec ≡ ∀σ ∈ tracesspec(s0), ∀i ∈ init(s0 afterspec σ), ∀o ∈ O∗.

(t0 afteriut σ)
i/o−→ ⇒ (s0 afterspec σ)

i/o−→

Here s0 is the initial state of spec. The initial state of the iut, t0, is generally
not known. The iut is in this abstract state when we select its url for the first
time. Intuitively the conformance relation reads: if the specification allows input
i after trace σ, then the observed output of the iut should be allowed by the
specification. If spec does not specify a transition for the current state and input,
anything is allowed.
2 In the implementation this function is able to yield an error message if the combi-

nation of output and target state is invalid, rather than having a plain boolean as
result.
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For the specification spec it is perfectly legal to be partial. That is nothing is
specified about the behavior for some state and input combinations. The inter-
pretation in the conformance relation is that all behavior of the iut is allowed.
Since everything is allowed, it makes no sense to test this.

The iut cannot refuse inputs. In every state the iut should give some response
to any input. This response can be an error message or an empty sequence.
During testing for conformance only inputs occurring in the specification after
a valid trace will be applied.

This conformance relation is very similar to Tretmans ioco (Input Output
Conformance) relation. The original ioco relation [9] handles conformance of
labeled transition systems (LTS). The essential difference between a LTS (as
used in the ioco relation) and a ESM is that the input and output are separate
actions in a LTS. This implies that a LTS allows for instance two consecutive
inputs without an (probably empty) output of each of these inputs. Exactly
one input and the associated output are combined to a single transition in an
ESM. Moreover, an ESM has rich states where the “state” of an LTS is given
by the current location in the LTS and the value of a set of global variables.
For the abstraction level of web applications used here, the ESM-based view is
more appropriate than a LTS-based view: we always want to consider the output
associated to a given input.

2.2 Testing Conformance

The conformance relation states that for all inputs allowed after all traces of the
specification, the input-output pair obtained from the iut should also occur in
the specification. Since the number of different traces is unbounded for a general
ESM, it is impossible to determine conformance by exhaustive testing. For a
general ESM the real conformance can only be determined by model checking the
specification and a model of the web application. That is a completely different
technique from model-based testing. Here we want to treat the web application
as a black box. We can apply an input to the web application and observe the
generated output. No detailed model of its behavior is known. Hence, model
checking is not an option.

Testing can however give a fair approximation of conformance. Moreover, a
large number of correct transitions increases the confidence in the correctness of
the iut. Experience shows that nonconformance is very often found rather quickly.
Errors are found most often within thousands or even hundreds of transitions,
rather than millions of transitions. Nevertheless, it is easy to design an iut with
an error that can only be found with an enormous testing effort, but these kind
of errors appear to be rare in practice.

Since checking the conformance by testing all possible traces is generally im-
possible, we test conformance by verifying a fixed number of traces. For each
trace we check a finite number of transitions with the following algorithm:

testConf : N × P Sspec × Siut → Verdict
testConf (n, s, u) = if s = ∅
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then Fail
else if n = 0 ∨ init (s) = ∅
then Pass
else testConf (n − 1, t, v)

where i ∈ init(s); (o, v) = iut (u, i); s
i/o−→ t

In this algorithm n ∈ N is the number of steps still to be tested in the current
trace, s ∈ P Sspec is the set of possible states in the specification, u ∈ Siut is the
abstract state of the iut, and Verdict is the result type that contains the elements
Fail and Pass. Since the iut is a black box, the state u cannot be observed. We
assume that the iut is available as a function of type (Siut×I) → (O∗×Siut). The

consistency predicate P (o, t) is incorporated in the transition s
i/o−→ t. Since the

transition function yields a function, the new set of possible states is actually
computed as t = {x | ∀si ∈ s, ∀f ∈ δf (si, i), ∀x ∈ f(o), P (o, x)}. Due to the

overloading of the transition notation we can write it concisely as s
i/o−→ t.

Testing of a single trace is initiated by testConf (N, {s0}, S0
iut), where N is the

maximum length of this trace, s0 the initial state of the specification, and S0
iut the

initial abstract state of the iut. The input i used in each step is chosen arbitrarily
from the set init(s). In the actual implementation it is possible to control this
choice. The default algorithm generates input elements in pseudo random order
and uses the first input element that is in init(s), i.e. ∃x ∈ s.δf (x, i) �= ∅.

2.3 Implementation

Apart from the representation of the specification the conformance relation used
here is identical to the conformance relation implemented previously in G∀ST.
The type of specifications handled by G∀ST are functions of type Spec s i o.
Given a state s and an input i, the specifications yields a list of functions. Each
of these functions yields a list of allowed targets states [s ] after it receives the
output obtained from the iut.

: : Spec s i o :== s → i → [ [o ]→ [s ] ]

Since s, i, and o are type variables, one can choose any type for states inputs
and outputs. In order to test web applications the test system has to behave as
a browser for the web application. The web application expects an input and
yields a new HTML-page as response. G∀STis extended by a module that selects
the indicated input element from the current page and sends an input to the
web application as if it were generated by a real browser. The page received as
answer from the iut is used in the test of conformance. The additional predicate
to check the consistency of the page and the states of the specification can be
given as an option to the main test function:

testHtml : : [TestSMOption s i Html ] → (Spec s i Html) → s →
(∗HSt → (Html ,∗HSt)) → ∗World → ∗World

The first argument is the list of test options. The options can control the num-
ber of traces used in the test and their length, the amount of detail written
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in log-files, the input selection algorithm etcetera. It is also possible to add a
predicate checking the consistency of the current HTML-page and the state of
the specification. G∀ST has reasonable defaults for all these parameters. Hence,
it is often possible to leave this list of options empty. The second argument is
the specification as shown above. The next argument is the initial state of the
specification. The final arguments are the web application and Clean’s world.

In order to facilitate testing of the received page, there are functions to query
the data structure representing the HTML-page. For instance it is possible to
obtain the list of all texts from the page, and to retrieve all text labeled with
some name. These names are the anchors that are used in the page. Requiring
anchors with specific names appears to be very convenient, but not necessary, in
the testing of web-pages. For example htmlTxts "Answer", applied to the current
page yields the list of all strings labeled "Answer".

3 Browser Navigation

In order to use our model-based test tool G∀ST to test web applications with
browser navigation, we need a model of the desired behavior. First we determine
the requirements for such a specification. An unattractive option is to add inputs
Back and Forward to each specification and let the test engineer completely specify
the semantics of these actions. Requirement 1 : it should be easy to transform
a specification ignoring browser navigation to a specification prescribing default
behavior for browser navigation.

Even if the web application itself is a simple finite state machine with one or
more loops the specification needs an unbounded amount of memory to record
the potentially infinite number of browser navigation actions. Requirement 2 :
there is no artificial limit on the number of browser navigation actions.

Next we argue that using the back-button is not an undo of the previous tran-
sition in the specification. Consider the left state machine in figure 1. Suppose we
know that the specification is in state S0. When we apply the input i1 to the iut
and observe the output O1 the set of possible states is {S1, S2}. After observing
a transition i2/O3 the state is S4. Hence the previous state was S2. The back

button brings the specification in this state S2 via the transition S2
Back/O1←−−−−−− S4

and not in {S1, S2}. This implies that if we apply the input i2 again the only
allowed output is O3. Requirement 3 : the back-button is a normal transition for
the specification, not an undo action for the specification.

If the transition labeled i2/O2 should be allowed after the trace i1/O1; i2/O3;
Back/O1, we need a specification as depicted on the right in figure 1.

3.1 Persistent States

In the discussion above we have assumed that the web application stores its state
in the web-page. This state can either be stored in visible parts like edit boxes
and radio buttons, or in so-called hidden fields in the web-page. This content is
invisible for the user in a normal browser window, but readable and writable for
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the web application. If the entire state of the web application is stored in the
web-page, the web application goes to its previous state if the user goes a page
back with the back-button of the browser.

Consider what would happen if the base converter (introduced in section 4.1)
stores the number to be converted, the latest contents of the edit-box, in a
persistent memory location, like in a cookie or some storage location on the
web-server. If the user uses the back-button the browser displays the previous
page, but the number to be converted is not changed even if it is different on
the previous page which becomes actual. When the user chooses now a different
base on this page not the displayed number is converted, but the number from
the persistent memory.

For the number to be converted this is considered as undesirable behavior,
but for a counter that keeps track of the total number of conversions done in
this session this is exactly what is needed. This implies that the designer of the
web application should determine the desired behavior for each variable in the
web application.

In order to perform a model-based test of such a web application the model
should reflect the persistent or volatile behavior of the modeled components of
the state. Instead of splitting the state of each web application explicitly in a
persistent and a volatile part, we ask the user to define a function that composes
the new state of the specification from the last state and the previous state
on a transition corresponding to a back-button. The default function yields the
previous state. This corresponds to a complete volatile memory without any
persistent component.

4 A Model Transformer to Model Browser Navigation

In this section we present a specification transformer that converts a specification
without browser navigation to a specification that covers browser navigation.
The transformed specification states that a Back just returns to the previous

Fig. 1. Two nondeterministic state machines with back transitions
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state in the specification without any state change corresponding to persistent
state components. The Forward in the specification is always the undo of the
corresponding Back-action, independent of the existence of persistent components
in the state of the web application. The user can easily specify exceptions to this
rule.

Web applications are specified most concisely using tailor made types for their
input and state. Instances of the class transInput transform a tailor made type
for inputs to the type HtmlInput required by the test system. It is undesirable
to extend all types for inputs with their own back and forward buttons, and
all types for state with their own history. This problem is solved by using a
polymorphic type BFInput i. This type states that the input is either an element
of the input type of the specification, a backward button from the browser, or a
forward button from the browser.

: : BFInput i = SpecIn i | BrowserBack | BrowserForward

In a similar way we lift the type of a single state of the specification to a state
with a history, past, and a future, next.

: : BFState s = {past : : [s ] , next : : [s]}

By convention the current state is the first state in the past:

toBFState : : s → BFState s
toBFState s = {past = [s ] , next = [ ]}

Lifting a specification from an ordinary state s to a state BFState s that is also
able to handle browser navigation is done by the function toBackForwardSpec.
This function transforms both the state and the input to the types given above.

toBackForwardSpec : : (Spec s i Html) (s→Bool) (Maybe (s→s→ [Html ]→s))
→ (Spec (BFState s) (BFInput i) Html)

toBackForwardSpec s v Nothing = toBackForwardSpec s v (Just (λc p o→p))
toBackForwardSpec spec v (Just back) = BackForwardSpec
where

BackForwardSpec {past=[c ,p :r ] ,next} BrowserBack
= [λo→[{past=[back c p o :r ] ,next=[c :next ]} ] ]

BackForwardSpec {past ,next=[n :r]} BrowserForward
= [λo→[{past=[n :past ] ,next=r} ] ]

BackForwardSpec {past=[c :r ] ,next} (SpecIn i)
= [λo→[{past=i f (v c) [n ,c :r ] [n :r ] ,next=[]}\\n←f o]\\f←spec c i ]

BackForwardSpec {past ,next} input = [ ]

The predicate v checks whether the state to be stored is valid. Only valid states
are stored in the history. Particularly the initial state used to startup the web ap-
plication is usually regarded to be invalid. The optional function s→s→ [Html ]→s

can is used to copy persistent parts of the current state to the previous state for
a BrowserBack input. Note the rather complex behavior specified for an ordinary
input: each new state receives its own copy of the history.
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4.1 Example: Base Converter

The first example is a web application that converts a decimal number to some
other base. The bases supported are 2 (binary), 8 (octal), 12 (duodecimal), and
16 (hexadecimal). The base to be used is selected by the corresponding button.
The number to convert is given in an integer edit box. In figure 2 a screen shot
and the transition diagram of the Extended State Machine are given.

This example is clearly not a classic HTML-page, it contains buttons and
performs computations rather than simple text and links. The state of the spec-
ification of this web application contains just the number to be transformed
and the base to be used for this transformation. The state is represented by a
record of type State containing the number and the base as an element of the
enumeration type Base.

: : State = {n : : Int , b : : Base}
: : Base = Bin | Oct | Duo | Hex

The behavior of this web application is specified by the function BaseConvSpec:

BaseConvSpec : : State In → [ [Html ] → [State ] ]
BaseConvSpec s (BaseButton b) = [checkN2 {s&b=b} b s .n ]
BaseConvSpec s (IntTextBox i) = [checkN2 {s&n=i} s .b i ]

checkN2 : : State Base Int [Html ] → [State ]
checkN2 state b n html

| findHtmlTexts "n2" html == [convert (toInt b) n ] = [state ]
| otherwise = [ ]

convert : : Int Int → String
convert b i

| i<0 = "-" + convert b (∼i)
| i<b = baseDigits b ! ! i
| otherwise = convert b (i/b) + baseDigits b ! ! (i rem b)

After each transition the specification checks whether the string labeled "n2" in
the HTML-code received from the web application is equal to the string obtained

Fig. 2. Screen shot of the base converter and its Extended State Machine
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by transforming the current number to a string in the current base. This example
shows how we can use information from the parameterized state of the model
and the actual HTML-code of the web application in the construction of the
target state of the model. The initial state of the specification is:

initState = {n = 0 , b = Bin}

After these preparations we can test an iData-based implementation of the
base converter, called converter, by executing:

Start : : ∗World → ∗World
Start world = testHtml [ ] BaseConvSpec initState converter world

The web application is run by executing:

Start : : ∗World → ∗World
Start world = doHtmlServer converter world

Testing the web application converter with the specification BaseConvSpec does
not reveal any issues. All observed traces are allowed by the specification.

The Base Converter with Browser Navigation. For the base converter we
are happy with an implementation that treats the back-button of the browser
as an undo of the last change. This implies that the implementation can store
its entire state in the current page. That is the default choice of the iData, so
converter can ignore browser navigation completely.

Using the specification transformer introduced here it is very easy to test
whether the web application converter shows indeed the desired behavior. The
specification transformer toBackForwardSpec imposes exactly the desired behav-
ior. In order to execute the model-based tests one executes:

Start : : ∗World → ∗World
Start world = testHtml [ ] (toBackForwardSpec BaseConvSpec Nothing)

(toBFState initState) converter world

The results of this test show that the converter has the behavior prescribed by
the specification lifted to the domain of browser navigation.

4.2 Example 2: A Number Guessing Game

As a slightly more advanced example we show a number guessing game imple-
mented as web application. The player has to determine a number chosen by the
web application in the least number of guesses possible. A smart player will use
binary search to complete this task in O(log n) steps where n is the number of
possible values. After entering the right number the web application shows a list
of fame: the names of players and the number of guesses needed by them. This
application is one of the standard examples in the iData-library. After successful
manual testing it was assumed to be correct.

The required behavior of this web application is described by the function
ngSpec below. The specification keeps track of the upper and lower bound of the
possible correct answer. The specification also counts the number of tries and
checks if this is correctly reported by the web application for a correct answer.
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Fig. 3. The number guessing web application and a sketch of its state machine

: : NGState = {upB : : Int , lowB : : Int , tries : : Int}

newNGState = {upB = up , lowB = low , tries = 0}
initState = {newNGState & tries = −1}

ngSpec : : NGState In → [ [Html ]→ [NGState ] ]
ngSpec s input | s .tries<0 = [λ html = [newNGState ] ] // used at startup
ngSpec s (StringTextBox n) = [λ html = [s ] ]
ngSpec s (IntTextBox i)

| i < s .lowB = [tooLow t ]
| i > s .upB = [tooHigh t ]
| i == s .upB && i == s .lowB = [correct ]
| otherwise = [tooLow {t & lowB = i+1} ,tooHigh {t & upB = i−1} ,correct ]

where t = {s & tries = s .tries+1}

tooLow t html | htmlTxts "Hint" html == ["larger" ]
&& htmlTxts "Answer" html == ["Sorry" ] = [t ]

| otherwise = [ ]
tooHigh t html | htmlTxts "Hint" html == ["smaller" ]

&& htmlTxts "Answer" html == ["Sorry" ] = [t ]
| otherwise = [ ]

correct html | htmlTxts "Answer" html==["Congratulations" ] = [newNGState ]
| otherwise = [ ]

Using this specification we tested the iData-implementation of this game. Test-
ing shows an error: in contrast to the specification the web application chooses
a new number to be guessed if the user enters a new name. Both choices for the
behavior after a name change can be defended, but the choice in the specification
and implementation has to be consistent. This shows that model-based testing
of web applications is able to find data-related inconsistencies.

The Number Guessing Game with Browser Navigation. Using browser
navigation, it seems attractive to cheat in this game in order to enter one’s
name high in the list of fame. A player guesses numbers until she knows the
correct value. Then the user presses the back button until she is back to the
HTML-page showing this task for the first time. Now she can enter the correct
number immediately. In order to prevent this kind of cheating we require that
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the number of tries is stored in persistent memory (file, database or cookie)
instead of in the page. If the number of tries is stored outside the HTML-page,
going to the previous page does not affect the number of tries. Hence the player
is not able to cheat in this way. In an iData-application such a change is just a
matter of indicating a different storage option for the associated counter.

When we lift the specification ngSpec to the level of browser actions we need
to deviate from the general rule that states that all components of the state
are stored in the page. The number of tries in the previous state p should be
identical to the number of tries in the current page c. Using our specification
transformer this is expressed as:
liftedSpec = toBackForwardSpec ngSpec valid (Just backNumGuess)
valid s = s .tries ≥ 0
backNumGuess c p o = {p & tries = c .tries}
Several other issues were found using model-based testing with this specification.
1) The first issue is found by the predicate that the number of tries as text in
the page should always be identical to number of tries in the specification. The
first use of the back-button spoils this property. 2) If one does not play the
game to the end and starts a new one later, the web application continues with
the old number of tries in persistent memory. 3) Entering the same input twice
in a row is counted as one try in the web application, but as two tries in the
specification. 4) The number to be guessed is stored in persistent memory by the
web application, but the bounds are part of an ordinary state in the specification.
This leads to inconsistencies in answers if one browses with the back-button over
a correct guess and then continues with guessing. The specification prescribes
consistency with the old bounds, while the answers of the web application are
based on a new target. During the correction of these problems several small
errors were introduced accidently and found by G∀ST.

Even testing a simple application that was assumed to be correct raised a
number of serious issues. This shows that this framework is able to spot issues
in real web applications. Testing with browser navigation often reveals issues
related to the kind of storage used for parts of the state of the web application.

To demonstrate the possibilities of introducing additional changes in the lifted
specification, we show how we can prevent going back to a previous game in the
tests (corresponding to additional issue 4 above).
liftedSpec2 ls=:{past=[s ,t :r]} | s .tries==0 = liftedSpec2 {ls & past=[s]}
liftedSpec2 s = toBackForwardSpec ngSpec valid (Just backNumGuess) s

If the number of tries in the current state is zero this implies that a new game is
started. Going back to previous states is prevented by removing these states from
the lifted specification. Note that only this additional requirement is defined, the
general specification transformation keeps track of everything else.

By this additional requirement we only omit this behavior in the model. A
real user might still provide this trace. When the model does not specify any
behavior for such a trace, anything is allowed as behavior of the web application.
So, if we have an opinion an the behavior of the iut in such a situation, we should
specify it rather than remove it from the model.
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5 More Browser Navigation

Most browsers provide more ways of browser navigation than just going a single
page back or forward. A fairly standard option is to select one of the pages from
the history or future to go n pages back or forward. It is straightforward to model
such an transition and hence to test it using our model-based testing approach.

Most browsers allow also the possibility to clone a page. At any moment a user
can decide to switch from the current page to such a clone or back and starts
giving inputs from that page. This is slightly different from just going n pages
back since a new input removes all forward pages (if they exist). A cloned page
is not effected by a new input in some other page. In order to test this behavior
we have to model it. This implies that we have to maintain a set of BFStates
instead a single BFState. At the input Clone we copy the current state from the
current BFState to a new BFState. At the input Switch the model makes another
BFState the current state. Testing proceeds as before using this new state in the
specification.

6 Related Work

Many other test tools for web applications exist, see www.softwareqatest.com
for an overview. They often execute user-defined test scripts (like HttpUnit [2]
see also httpunit.sourceforge.net). Browser navigation is only tested if it is
explicitly included manually in the scripts. Our tool generates traces on-the-fly
from the specification instead of executing predefined scripts. Other tools verify
the HTML-code generated by the application, or the existence of the links in a
generated page.

The paper by Andrews et al. [1] also specifies web applications by state ma-
chines in order to test the web applications. They argue that a huge number
of errors is introduced by browser navigation. Hence, it is very worthwhile to
test this. An important restriction of their approach is that they do not solve
the oracle problem: their specification only specifies the inputs that should be
accepted by the web application. The result of applying an input is not specified
and cannot be tested. The reason the oracle problem is not solved is that an
input to a web application can have many effects: e.g. an order can be printed
or stored in an database. Hence, it is next to impossible to determine all effects
of applying an input to a web application. Moreover, even the effect of input
to the new HTML-page can be large. Usually we do not want to pinpoint every
detail of the HTML-code that should be produced by the web application.

In our approach we cannot specify all effects of an input to a web application.
Instead, we write a predicate over the resulting HTML-page. With a predicate
we can specify the amount of detail needed, ranging from nothing at all to
every detail of the HTML-code. Moreover, we use parameterized state machines
rather than finite state machine like Andrews. This implies that we can store
much data-related information (like counters, values and names) compactly in a
parameterized state. This paper shows that we can specify elements of the page

www.softwareqatest.com
httpunit.sourceforge.net
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using this information and test these data by the model-based test tool G∀ST.
As future research we will investigate how other effects of the web application
on the world can be specified and tested.

Another popular approach to specifying transition systems is based on labeled
transition systems, most notably the ioco approach and its variants as introduced
by Tretmans [9]. In such a system the input and associated output have to be
modeled by two separated actions. In our model of web applications the input
and output are directly coupled: each input produces a new page as result. This
is very convenient for the level of abstraction we want to consider here. In [3]
Frantzen et al. describe the basis of an approach to test web services (instead
of the web applications handled here). They use a Java like language as carrier
for their specification which makes it less suited for function transformations
that are the key of our approach. The state of the specification in their current
implementation is mapped to a single integer. This implies that both examples
used in this paper cannot be handled by their tooling.

We plan to extend G∀ST with asynchronous transitions in order to specify
and test systems where the input and output are not necessarily tightly coupled.
This would allow the handling of timeouts and web applications based on AJAX-
technology.

7 Conclusions

It is a trend that new applications start using a browser as their universal graph-
ical user interface. By design or not, these applications receive an interface with
browser navigation. It is important to specify and test this behavior. We intro-
duce a specification transformer that makes it easy to lift a specification that
ignores browser navigation to a version that includes browser navigation. Only
exceptions to the general behavior have to be specified explicitly. In this paper
we demonstrate that this technique is capable of spotting errors in real web ap-
plications. We have shown that it really matters where the state of an application
is stored. If the entire state is stored in the page the back-button corresponds
to an undo-action. A state stored at the server is not influenced at all by using
the back-button. The desired behavior of such a web application needs to be
prescribed in a specification.

Specifying web applications by extended state machines has been shown to
be a good basis for model-based testing. Representing the extended state ma-
chines by functions in a functional programming language yields very compact
and elegant specifications. Due to the use of parameterized types and compu-
tations with these parameters, the specifications are clearer and more compact
than corresponding graphical representations of the specification. Moreover, the
representation of specifications by a function is much better suited for transfor-
mations, like lifting to the domain of browser navigation.

We show that this technique is able to spot issues in real web applications. In
this paper we used web applications constructed with Clean’s iData library, but
that is not an inherent limitation of the technique described. For an arbitrary
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web application the test system will receive a textual version of the page in HTML
rather than the data structure used here. The iData system contains a parser
that is able to transform the textual representation to the data structure used
here. If the test engineer would prefer, she can also use the textual representation
of HTML (or any other representation preferred) in the specification and hence
in the tests.

The formal treatment of conformance is improved in this paper. In our pre-
vious work [6], the predicate that checks the consistency of the output and the
target state was added rather ad-hoc to the test algorithm. In this paper this
predicate is part of the transition relation, and in that way smoothly integrated
in the conformance relation and the test algorithm.
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Abstract. This paper presents an environment to support high-level
database programming in the multi-paradigm declarative programming
language Curry. We define an application programming interface (API)
that abstracts from the concrete database access methods. The API sup-
ports transactions and exploits Curry’s type system to ensure a strict
separation between queries and updates. In order to ensure database up-
dates that are safe w.r.t. an intended data model (e.g., containing specific
relations between entities), we assume a description of the data depen-
dencies in the entity-relationship (ER) model from which all access and
update operations related to the database are generated. We propose
a representation of ER diagrams in the declarative language Curry so
that they can be constructed by various tools and then translated into
this representation. Furthermore, we have implemented a compiler from
this representation into a Curry program that provides safe access and
update operations based on the API for database programming.

1 Motivation

Many applications in the real world need databases to store the data they pro-
cess. Thus, programming languages for such applications must also support some
mechanism to organize the access to databases. This can be done in a way that
is largely independent on the underlying programming language, e.g., by pass-
ing SQL statements as strings to some database connection. However, it is well
known that such a loose coupling is a source of security leaks, in particular, in
web applications [15]. Thus, a tight connection or amalgamation of the database
access into the programming language should be preferred.

In principle, logic programming provides a natural framework for connecting
databases (e.g., see [4,6]) since relations stored in a relational database can be
considered as facts defining a predicate of a logic program. Unfortunately, the
well-developed theory in this area is not accompanied by practical implementa-
tions. For instance, distributions of Prolog implementations rarely come with a
standard interface to relational databases. An exception is Ciao Prolog which has
a persistence module [3] that allows the declaration of predicates where facts are
persistently stored, e.g., in a relational database. This module supports a simple
method to query the relational database, but updates are handled by predicates
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with side effects and transactions are not explicitly supported. A similar con-
cept but with a clear separation between queries and updates has been proposed
in [10] for the multi-paradigm declarative language Curry [7,14]. This will be
the basis for the current framework that provides an environment for high-level
programming with databases. The objectives of this work are:

– The methods to access and update the database should be expressed by
language features rather than passing SQL strings around.

– Queries to the database should be clearly separated from updates that might
change the outcome of queries.

– Safe transactions, i.e., sequence of updates that keep some integrity con-
straints, should be supported.

– The necessary code for these operations should be derived from specifications
whenever possible in order to obtain more reliable applications.

In a first step, described in Section 2, we define an application programming
interface (API) for database programming in Curry that abstracts from the
concrete methods to access a given database by providing abstract operations
for this purpose. This API exploits the type system in order to ensure a strict
separation between queries and updates. To specify the logical structure of the
data to be stored in a database, we use the entity-relationship (ER) model
[2]. In order to be largely independent of concrete specification tools, we define
in Section 3 a representation of ER diagrams in Curry so that concrete ER
specification tools can be connected by defining a translator from the format
used in these tools into this Curry representation. Finally, we develop a compiler
that translates an ER diagram into a Curry module that contains access and
update operations and operations to check integrity constraints according to the
ER diagram. The generated code is based on the database API. The compilation
method is sketched in Section 4. Finally, Section 5 contains our conclusions.

2 Database Programming in Curry

We assume familiarity with functional logic programming (see [12] for a recent
survey) and Curry [7,14] so that we give in the following only a short sketch of
the basic concepts relevant for this paper.

Functional logic languages integrate the most important features of functional
and logic languages to provide a variety of programming concepts to the pro-
grammer. For instance, the concepts of demand-driven evaluation, higher-order
functions, and polymorphic typing from functional programming are combined
with logic programming features like computing with partial information (logic
variables), constraint solving, and nondeterministic search. This combination
leads to better abstractions in application programs such as implementing graph-
ical user interfaces [8], programming dynamic web pages [9,11], or access and
manipulation of persistent data possibly stored in databases [5,10].

As a concrete functional logic language, we use Curry in our framework but
it should be possible to apply the same ideas also to other functional logic lan-
guages, e.g., TOY [16]. From a syntactic point of view, a Curry program is a
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functional program extended by the possible inclusion of free (logic) variables in
conditions and right-hand sides of defining rules. Curry has a Haskell-like syntax
[17], i.e., a Curry program consists of the definition of functions and data types
on which the functions operate. Functions are first-class citizens and evaluated
lazily. To provide the full power of logic programming, functions can be called
with partially instantiated arguments and defined by conditional equations with
constraints in the conditions. Function calls with free variables are evaluated
by a possibly nondeterministic instantiation of demanded arguments (i.e., argu-
ments whose values are necessary to decide the applicability of a rule) to the
required values in order to apply a rule. Curry also offers other standard fea-
tures of functional languages, like higher-order functions, modules, or monadic
I/O [18].

The following Curry program defines functions for computing the concatena-
tion of lists and the last element of a list:

conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last :: [a] -> a
last xs | conc ys [x] =:= xs = x where x,ys free

Thus, logic programming is supported by admitting function calls with free vari-
ables (see “conc ys [x]” above) and constraints in the condition of a defining
rule. Conditional rules have the form l | c = r specifying that l is reducible to r
if the condition c is satisfied (see the rule defining last above). A constraint is
any expression of the built-in type Success. For instance, the trivial constraint
success is an expression of type Success that denotes the always satisfiable
constraint. “c1 & c2” denotes the concurrent conjunction of the constraints c1
and c2, i.e., this expression is evaluated by proving both argument constraints
concurrently. An equational constraint e1 =:= e2 is satisfiable if both sides e1
and e2 are reducible to unifiable constructor terms. Specific Curry systems also
support more powerful constraint structures, like arithmetic constraints on real
numbers or finite domain constraints (e.g., PAKCS [13]).

Using functions instead of predicates has the advantage that the information
provided by functional dependencies can be used to reduce the search space and
evaluate goals in an optimal way [1]. However, there are also situations where a
relational style is preferable, e.g., for database applications as considered in this
paper. This style is supported by considering predicates as functions with result
type Success. For instance, a predicate isPrime that is satisfied if the argument
(an integer number) is a prime can be modeled as a function with type

isPrime :: Int -> Success

The following rules define a few facts for this predicate:
isPrime 2 = success
isPrime 3 = success
isPrime 5 = success
isPrime 7 = success
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Apart from syntactic differences, any pure logic program has a direct corre-
spondence to a Curry program. For instance, a predicate isPrimePair that is
satisfied if the arguments are primes that differ by 2 can be defined as follows:

isPrimePair :: Int -> Int -> Success
isPrimePair x y = isPrime x & isPrime y & x+2 =:= y

In order to deal with information that is persistently stored outside the pro-
gram (e.g., in databases), dynamic predicates are proposed in [10]. A dynamic
predicate is a predicate where the defining facts (see isPrime) are not part of
the program but stored outside. Moreover, the defining facts can be modified
(similarly to dynamic predicates in Prolog). In order to distinguish between def-
initions in a program (that do not change over time) and dynamic entities, there
is a distinguished type Dynamic for the latter.1 For instance, in order to define
a dynamic predicate prime to store prime numbers whenever we compute them,
we provide the following definition in our program:

prime :: Int -> Dynamic
prime dynamic

If the prime numbers should be persistently stored, we replace the second line
by

prime persistent "store"

where store specifies the storage mechanism, e.g., a directory for a lightweight
file-based implementation [10] or a database specification [5].

There are various primitives that deal with dynamic predicates. First, there
are combinators to construct complex queries from basic dynamic predicates.
For instance, the combinator

(<>) :: Dynamic -> Dynamic -> Dynamic

joins two dynamic predicates, and the combinators
(|>) :: Dynamic -> Bool -> Dynamic
(|&>) :: Dynamic -> Success -> Dynamic

restrict a dynamic predicate with a Boolean condition or constraint, respectively.
Since the operator “<>” binds stronger then “|>”, the expression

prime x <> prime y |> x+2 == y

specifies numbers x and y that are prime pairs.2 On the one hand, such ex-
pressions can be translated into corresponding SQL statements [5] so that the
programmer is freed of dealing with details of SQL. On the other hand, one can
use all elements and libraries of a universal programming language for database
programming due to its conceptual embedding in the programming language.

1 In contrast to Prolog, where dynamic declarations are often used for efficiency pur-
poses, this separation is also necessary here due to the lazy evaluation strategy which
makes it difficult to estimate when a particular evaluation is performed. Thus, per-
forming updates by implicit side effects is not a good choice.

2 Since the right argument of “|>” demands a Boolean value rather than a constraint,
we use the Boolean equality operator “==” rather than the equational constraint
“=:=” to compare the primes x and y.
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Since the contents of dynamic predicates can change over time, one needs a
careful concept of evaluating dynamic predicates in order to keep the declarative
style of programming. For this purpose, we introduce the notion of “queries”
that are evaluated in the I/O monad, i.e., at particular points of time in a
computation.3 Conceptually, a query is a method to compute solutions w.r.t.
dynamic predicates. Depending on the number of requested solutions, there are
different operations to construct queries, e.g.,

queryAll :: (a -> Dynamic) -> Query [a]
queryOne :: (a -> Dynamic) -> Query (Maybe a)

queryAll and queryOne construct queries to compute all and one (if possible)
solution to an abstraction over dynamic predicates, respectively. For instance,

qPrimePairs :: Query [(Int,Int)]
qPrimePairs = queryAll (\(x,y) -> prime x <> prime y |> x+2 == y)

is a query to compute all prime pairs. In order to access the currently stored
data, there is an operation runQ to execute a query as an I/O action:

runQ :: Query a -> IO a

For instance, executing the main expression “runQ qPrimePairs” returns prime
pairs w.r.t. the prime numbers currently stored in the dynamic predicate prime.

In order to change the data stored in dynamic predicates, there are operations
to add and delete knowledge about dynamic predicates:

addDB :: Dynamic -> Transaction ()
deleteDB :: Dynamic -> Transaction ()

Typically, these operations are applied to single ground facts (since facts
with free variables cannot be persistently stored), like “addDB (prime 13)” or
“deleteDB (prime 4)”. In order to embed these update operations into safe
transactions, the result type is “Transaction ()” (in contrast to the proposal
in [10] where these updates are I/O actions). A transaction is basically a se-
quence of updates that is completely executed or ignored (following the ACID
principle in databases). Similarly to the monadic approach to I/O [18], trans-
actions also have a monadic structure so that transactions can be sequentially
composed by a monadic bind operator:

(|>>=) :: Transaction a -> (a -> Transaction b) -> Transaction b

Thus, “t1 |>>= \x -> t2” is a transaction that first executes transaction t1,
which returns some result value that is bound to the parameter x before execut-
ing transaction t2. If the result of the first transaction is not relevant, one can
also use the specialized sequential composition “|>>”:

(|>>) :: Transaction a -> Transaction b -> Transaction b
t1 |>> t2 = t1 |>>= \_ -> t2

A value can be mapped into a trivial transaction returning this value by the
usual return operator:

returnT :: a -> Transaction a

3 Note that we only use the basic concept of dynamic predicates from [10]. The fol-
lowing interface to deal with queries and transactions is new and more abstract than
the concepts described in [10].



High-Level Database Programming in Curry 321

In order to define a transaction that depends on some data stored in a database,
one can also embed a query into a transaction:

getDB :: Query a -> Transaction a

For instance, the following expression exploits the standard higher-order func-
tions map, foldr, and “.” (function composition) to define a transaction that
deletes all known primes that are smaller than 100:

getDB (queryAll (\i -> prime i |> i<100)) |>>=
foldr (|>>) (returnT ()) . map (deleteDB . prime)

Since such a sequential combination of transactions that are the result of map-
ping a list of values into a list of transactions frequently occurs, there is also a
single function for this combination:

mapT_ :: (a -> Transaction _) -> [a] -> Transaction ()
mapT_ f = foldr (|>>) (returnT ()) . map f

To apply a transaction to the current database, there is an operation runT that
executes a given transaction as an I/O action:

runT :: Transaction a -> IO (Either a TError)

runT returns either the value computed by the successful execution of the trans-
action or an error in case of a transaction failure. The type TError of possible
transaction errors contains constructors for various kinds of errors, i.e., it is
currently defined as

data TError = TError TErrorKind String

data TErrorKind = KeyNotExistsError | DuplicateKeyError
| KeyRequiredError | UniqueError | NoRelationshipError
| MinError | MaxError | UserDefinedError

but this type might be extended according to future requirements (the string
argument is intended to provide some details about the reason of the error).
UserDefinedError is a general error that could be raised by the application pro-
gram whereas the other alternatives are typical errors due to unsatisfied integrity
constraints according to ER diagrams. An error is raised inside a transaction by
the operation

errorT :: TError -> Transaction a

where the specialization
failT :: String -> Transaction a
failT s = errorT (TError UserDefinedError s)

is useful to raise user-defined transaction errors. If an error is raised in a trans-
action, the transaction is aborted, i.e., the transaction monad satisfies the laws

errorT e |>>= t = errorT e
t |>>= \x -> errorT e = errorT e

runT (errorT e) = return (Right e)

Thus, the changes to the database performed in a transaction that raises an
error are not visible.
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There are a few further useful operations on transactions which are omitted
here since they are not relevant for this paper. We summarize the important
features of this abstract programming model for databases:

– Persistent data is represented in the application program as language entities
(i.e., dynamic predicates) so that one can use all features of the underlying
programming language (e.g., recursion, higher-order functions, deduction)
for programming with this data.

– There is a clear separation between the data access (i.e., queries) and updates
that can influence the results of accessing data. Thus, queries are purely
declarative and are applied to the actual state of the database when their
results are required.

– Transactions, i.e., database updates, can be constructed from a few primitive
elements by specific combinators. Transactions are conceptually executed as
an atomic action on the database. Transactions can be sequentially composed
but nested transactions are excluded due to the type system (this feature is
intended since nested transactions are usually not supported in databases).

This API for database programming is defined in a specific Database library4

so that it can be simply used in the application program by importing it. This
will be the basis to generate higher-level code from entity-relationship diagrams
that are described next.

3 Entity-Relationship Diagrams

The entity-relationship model [2] is a framework to specify the structure and
specific constraints of data stored in a database. It uses a graphical notation,
called entity-relationship diagrams (ERDs) to visualize the conceptual model.
In this framework, the part of the world that is interesting for the application is
modeled by entities that have attributes and relationships between the entities.
The relationships have cardinality constraints that must be satisfied in each valid
state of the database, e.g., after each transaction.

There are various tools to support the data modeling process with ERDs. In
our framework we want to use some tool to develop specific ERDs from which the
necessary program code based on the Database library described in the previous
section can be automatically generated. In order to become largely independent
of a concrete tool, we define a representation of ERDs in Curry so that a concrete
ERD tool can be applied in this framework by implementing a translator from
the tool format into our representation. In our concrete implementation, we have
used the free software tool Umbrello UML Modeller5, a UML tool part of KDE
that also supports ERDs. Figure 1 shows an example ERD constructed with
this tool. The developed ERDs are stored in XML files in XMI (XML Metadata
Interchange) format, a format for the exchange of UML models. Thus, it is a

4 http://www.informatik.uni-kiel.de/∼pakcs/lib/CDOC/Database.html
5 http://uml.sourceforge.net

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Database.html
http://uml.sourceforge.net
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Fig. 1. A simple entity-relationship diagram for university lectures

standard XML transformation task to translate the Umbrello format into our
ERD format.

Unfortunately, there is no standard definition of ERDs so that different tools
support ERDs with different features. In the following, we provide a represen-
tation of ERDs that is sufficient for the Umbrello UML Modeller but it should
not be difficult to extend this representation to other kinds of ERDs (e.g., with
attributes for relations). The representation of ERDs as data types in Curry
is straightforward. In our case, a complete ERD consists of a name (that is
later used as the module name for the generated code) and lists of entities and
relationships:

data ERD = ERD String [Entity] [Relationship]

An entity has a name and a list of attributes, where each attribute has a name,
a domain, and specifications about its key and null value property:

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)
| FloatDom (Maybe Float)
| CharDom (Maybe Char)
| StringDom (Maybe String)
| BoolDom (Maybe Bool)
| DateDom (Maybe ClockTime)
| UserDefined String (Maybe String)
| KeyDom String -- later used for foreign keys

Thus, each attribute is part of a primary key (PKey), unique (Unique), or not
a key (NoKey). Furthermore, it is allowed that specific attributes can have null
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values, i.e., can be undefined. The domain of each attribute is one of the stan-
dard domains or some user-defined type. In the latter case, the first argument
of the constructor UserDefined is the qualified type name used in the Curry
application program (note that the Database library is able to handle complex
types by mapping them into standard SQL types [5]). For each kind of domain,
one can also have a default value (modeled by the Maybe type). The constructor
KeyDom is not necessary to represent ERDs but will be later used to transform
ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities
(REnd), where each connection has the name of the connected entity, the role
name of this connection, and its cardinality as arguments:

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Range Int (Maybe Int)

The cardinality is either a fixed integer or a range between two integers (where
Nothing as the upper bound represents an arbitrary cardinality). For instance,
the simple-complex (1:n) relationship Teaching in Figure 1 can be represented
by the term

Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Range 0 Nothing)]

4 Compiling ER Diagrams into Curry Programs

This section describes the transformation of ERDs into executable Curry code.
The generated code should contain dynamic predicates corresponding to the
entities and relationships of an ERD as well as insertion, update, and delete
operations for entities and relationships. The important issue of this work is the
automatic checking of the integrity constraints of the conceptual data model:
each operation that modifies entities or relationships should only be executable
if the uniqueness and cardinality constraints specified in the corresponding ERD
are satisfied in the modified database. For this purpose, we exploit transactions
and the possibility to abort transactions by raising errors. For instance, if one
tries to delete a student who participates in some lecture, the transaction error
KeyRequiredError is raised, i.e., a student entity can be deleted only if it is not
involved in any Membership or Participation relationship.

The transformation from ERDs into Curry code is done in the following order:

1. Translate an ERD into an ERD term.
2. Represent the relationships occurring in an ERD term as entities.
3. Map all entities into corresponding Curry code based on the Database li-

brary.

The first step depends on the format used in the ERD tool. As mentioned above,
we have implemented a translator from the XMI format used by the Umbrello
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UML Modeller into ERD terms. This part is relatively easy thanks to the presence
of XML processing tools.

4.1 Transforming ERDs

The second step is necessary since the relational model supports only relations
(i.e., database tables). Thus, entities as well as relationships must be mapped
into relations. The mapping of entities into relations is straightforward by us-
ing the entity name as the name of the relation and the attribute names as
column names. The mapping of relationships is more subtle. In principle, each
relationship can be mapped into a corresponding relation. However, this simple
approach might cause the creation of many relations or database tables. In order
to reduce them, it is sometimes better to represent specific relations as foreign
keys, i.e., to store the key of entity e1 referred by a relationship between e1 and
e2 in entity e2. Whether or not this is possible depends on the kind of the rela-
tion. The different cases will be discussed next. Note that the representation of
relationships as relations causes also various integrity constraints to be satisfied.
For instance, if an entity has an attribute which contains a foreign key, the value
of this attribute must be either null or an existing key in the corresponding
relation. Furthermore, the various cardinalities of each relationship must be sat-
isfied. Ideally, each transaction should modify the database only if all integrity
constraints hold in the new state of the database.

Now we discuss the representation of the various kinds of relationships in
the ER model. For the sake of simplicity, we assume that each relationship
contains two ends, i.e., two roles with cardinality ranges (min, max) so that we
can characterize each relationship by their related cardinalities (minA, maxA) :
(minB, maxB) between entities A and B (where maxi is either a natural number
greater than mini or ∞, i ∈ {A, B}).

Simple-simple (1:1) relations: This case covers all situations where each car-
dinality is at most one. In the case (0, 1) : (1, 1), the key of entity B is added
as an attribute to entity A containing a foreign key since there must be ex-
actly one B entity for each A entity. Furthermore, this attribute is Unique
to ensure the uniqueness of the inverse relation. The case (0, 1) : (0, 1) can
be similarly treated except that null values are allowed for the foreign key.

Simple-complex (1:n) relations: In the case (0, 1) : (minB, maxB), the key
of entity A is added as a foreign key (possibly null) to each B entity. If
minB > 0 or maxB �= ∞, the integrity constraints for the right number
of occurrences must be checked by each database update. The case (1, 1) :
(0, maxB) is similarly implemented except that null values for the foreign
key are not allowed.

Complex-complex (n:m) relations: In this case a new relation representing
this relationship is introduced. The new relation is connected to entities A
and B by two new relationships of the previous kinds.

Note that we have not considered relationships where both minimal cardinalities
are greater than zero. This case is excluded by our framework (and rarely occurs
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in practical data models) since it causes difficulties when creating new entities
of type A or B. Since each entity requires a relation to an existing entity of the
other type and vice versa, it is not possible to create the new entities indepen-
dently. Thus, both entities must be created and connected in one transaction
which requires specific complex transactions. Therefore, we do not support this
in our code generation. If such relations are required in an application (e.g.,
cyclic relationships), then the necessary code must be directly written with the
operations of the Database library.

Based on this case distinction, the second step of our compiler maps an ERD
term into a new ERD term where foreign keys are added to entities and new
entities are introduced to represent complex-complex relations. Furthermore,
each original entity is extended with an internal primary key to simplify the
access to each entity by a unique scheme.

4.2 Code Generation for ERDs

After the mapping of entities and relationships into relations as described above,
we can generate the concrete program code to organize the database access and
update. As already mentioned, we base the generated code on the functionality
provided by the library Database described in Section 2. The schemas for the
generated code are sketched in this section. We use the notation En for the
name of an entity (which starts by convention with an uppercase letter) and
en for the same name where the first letter is lowercase (in order to satisfy the
convention in Curry that data constructors and functions start with uppercase
and lowercase letters, respectively).

The first elements of the generated code are data types to represent relations.
For each entity En with attributes of types at1, . . . , atn, we generate the following
two type definitions:

data En = En Key at1...atn

data EnKey = EnKey Key

Key is the type of all internal keys for entities. Currently, it is identical to Int.
Thus, each entity structure contains an internal key for its unique identifica-
tion. The specific type EnKey is later used to distinguish the keys for different
entities by their types, i.e., to exploit the type system of Curry to avoid confu-
sion between the various keys. For each relation that has been introduced for a
complex-complex relationship (see above), a similar type definition is introduced
except that it does not have an internal key but only the keys of the connected
entities as arguments. Note that only the names of the types are exported but
not their internal structure (i.e., they are abstract data types for the applica-
tion program). This ensures that the application program cannot manipulate
the internal keys. The manipulation of attributes is possible by explicit getter
and setter functions that are described next.

In order to access or modify the attributes of an entity, we generate corre-
sponding functions where we use the attribute names of the ERD for the names
of the functions. If entity En has an attribute Ai of type ati (i = 1, . . . , n), we
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generate the following getter and setter functions and a function to access the
key of the entity:

enAi :: En -> ati
enAi (En _ ... xi ... _) = xi

setEnAi :: En -> ati -> En
setEnAi (En x1 ... _ ... xn) xi = En x1 ... xi ... xn

enKey :: En -> EnKey
enKey (En k _ ... _) = EnKey k

As described in Section 2, data can be persistently stored by putting them into
a dynamic predicate. Thus, we define for each entity En a dynamic predicate

enEntry :: En -> Dynamic
enEntry persistent "..."

Since the manipulation of all persistent data should be done by safe operations,
this dynamic predicate is not exported. Instead, a dynamic predicate en is ex-
ported that associates a key with the data so that an access is only possible to
data with an existing key:

en :: EnKey -> En -> Dynamic
en key obj | key =:= enKey obj = enEntry obj

Although these operations seem to be standard functions, the use of a functional
logic language is important here. For instance, the access to an entity with a given
key k can be done by solving the goal “en k o” where o is a free variable that
will be bound to the concrete instance of the entity.

For each role with name rn specified in an ERD, we generate a dynamic
predicate of type

rn :: En1Key -> En2Key -> Dynamic

where En1 and En2 are the entities related by this role. The implementation
of these predicates depend on the kind of relationship according to their imple-
mentation as discussed in Section 4.1. Since complex-complex relationships are
implemented as relations, i.e., persistent predicates (that are only internal and
not exported), the corresponding roles can be directly mapped to these. Simple-
simple and simple-complex relationships are implemented by foreign keys in the
corresponding entities. Thus, their roles are implemented by accessing these keys.
We omit the code details that depend on the different cases already discussed in
Section 4.1.

Based on these basic implementations of entities and relationships, we gen-
erate code for transactions to manipulate the data and check the integrity con-
straints specified by the relationships of an ERD. In order to access an entity
with a specific key, there is a generic function that delivers this entity in a
transaction or raises a transaction error if there is no entry with this key:

getEntry :: k -> (k -> en -> Dynamic) -> Transaction en
getEntry key pred =
getDB (queryOne (\info -> pred key info)) |>>=
maybe (errorT (KeyNotExistsError "no entry for...")) returnT
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This internal function is specialized to an exported function for each entity:
getEn :: EnKey -> Transaction En
getEn key = getEntry key en

In order to insert new entities, there is a “new” transaction for each entity. If
the ERD specifies no relationship for this entity with a minimum greater than
zero, there is no need to provide related entities so that the transaction has the
following structure (if En has attributes of types at1, . . . , atn):

newEn :: at1 -> · · · -> atn -> Transaction En
newEn a1 ... an = check1 |>> ... |>> checkk |>> newEntry ...

Here, checki are the various integrity checks (e.g., uniqueness checks for at-
tributes specified as Unique) and newEntry is a generic operation to insert a
new entity. If attribute Ai has a default value or null values are allowed for it,
the type ati is replaced by Maybe ati in newEn.

For instance, consider the entity Student of Figure 1. It has an integer at-
tribute MatNum which is unique, two string attributes Name and Firstname, and
an attribute Email of the user-defined type Email where null values are allowed.
Thus, the generated transaction to insert a new Student entity is as follows:

newStudent :: Int -> String -> String -> Maybe Email
-> Transaction Student

newStudent matNum name firstname email =
unique studentMatNum studentEntry matNum |>>
newEntry (studentKeyToKey . studentKey)

setStudentKey
studentEntry
(Student 0 matNum name firstname email)

The operation setStudentKey is an internal setter function generated similarly
to the setter functions setEnAi, and the internal function studentKeyToKey (of
type StudentKey -> Key) strips off the StudentKey constructor.

The generic transaction unique implements a uniqueness check for arbitrary
entities and attributes. It raises a UniqueError if an instance with a given at-
tribute value already exists. The parameters are the attribute selector, the dy-
namic predicate representing this entity, and the new value of the attribute:

unique :: (en -> a) -> (en -> Dynamic) -> a -> Transaction ()
unique selector pred attr =
getDB (queryOne (\x -> pred x |> attr == selector x)) |>>=
maybe doneT

(\_ -> errorT (TError UniqueError "error message"))
The generic transaction newEntry adds the new entity. Similarly to getEntry,
it must be provided with parameters related to the specific entity, i.e., functions
to access and modify the key of an entity, the dynamic predicate of the entity,
and the initial value of the entity:

newEntry :: (en -> Key) -> (en -> Key -> en) -> (en -> Dynamic)
-> en -> Transaction en

newEntry keyf keyset pred entry =
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newDBKey keyf pred |>>= \k ->
let entrywithkey = keyset entry k in
addDB (pred entrywithkey) |>> returnT entrywithkey

-- get new key for an entity:
newDBKey :: (en -> Key) -> (en -> Dynamic) -> Transaction Key
newDBKey keyf pred =
getDB (queryAll pred) |>>= \es ->
returnT (if null es then 1 else foldr1 max (map keyf es) + 1)

If there are relationships for an entity with a minimum greater than zero, than
the keys (in general, a list of keys) must be also provided as parameters to the
operation newEn. In this case, the name of the new operation is extended with a
suffix explaining the meaning of the additional argument keys (an alternative to
such long names would be a generated documentation explaining the meaning
of these argument keys). For instance, the new operation for lectures according
to the ERD in Figure 1 has the following type signature (since a Lecture entity
contains a foreign Lecturer key representing the Teaching relationship):

newLectureWithLecturerTeachingKey :: Int -> String -> Maybe Int
-> LecturerKey -> Transaction Lecture

The first three arguments are the values of the Id, Title and Hours attributes
(where the attribute Hours has a default value so that the argument is op-
tional). The last argument is the key of the lecturer required by the relationship
Teaching. In a similar way, we generate “new” operations for each complex-
complex relationship where the arguments are the keys of the associated entities.

Similarly to newEn, we provide also operations to update existing entities.
These operations have the following structure:

updateEn :: En -> Transaction ()
updateEn e = check1 |>> ... |>> checkk |>> updateEntry ...

Again, the various integrity constraints must be checked before an update is fi-
nally performed. In order to get an impression of the kind of integrity constraints,
we discuss a few checks in the following.

We have already seen the integrity constraint unique that checks the unique-
ness property of attributes before inserting a new entity. If an entity contains
a foreign key, each update must check the existence of this foreign key. This
is the purpose of the generic transaction existsDBKey where the arguments
are the getter function (enKey) for the key in the foreign entity, the dynamic
predicate of the foreign entity, and the foreign key. If the key does not exist, a
KeyNotExistsError is raised:

existsDBKey :: (en -> k) -> (en -> Dynamic) -> k -> Transaction ()
existsDBKey keyf pred key =
getDB (queryOne (\x -> pred x |> key == keyf x)) |>>=
maybe (errorT (TError KeyNotExistsError "error message"))

(\_ -> doneT)



330 B. Braßel, M. Hanus, and M. Müller

For instance, the operation newLectureWithLecturerTeachingKey to insert a
new lecture as mentioned above is generated with the following code (the Id and
Title attributes are unique and the attribute Hours has 4 as a default value):

newLectureWithLecturerTeachingKey iD title hours ltKey =
unique lectureId lectureEntry iD |>>
unique lectureTitle lectureEntry title |>>
existsDBKey lecturerKey lecturerEntry ltKey |>>
newEntry (lectureKeyToKey . lectureKey)

setLectureKey
lectureEntry
(Lecture 0 iD title (maybe 4 id hours)

(lecturerKeyToKey ltKey))

Furthermore, there are generic transactions to check minimum and maximum
cardinalities for relationships and lists of foreign keys that can raise the trans-
action errors MinError, MaxError, or DuplicateKeyError. For each operation
generated by our compiler, the necessary integrity checks are inserted based on
the specification expressed by the ERD term.

Operations to delete entities or relationships are generated similarly to update
operations but with different integrity tests (e.g., a lecturer can be deleted only
if he does not teach any lecture, otherwise a KeyRequiredError is raised). An
interesting topic for future work is the generation of complex delete operations
for an entity that implicitly and recursively updates all other entities where this
entity occurs as a key. However, complex delete operations must be used with
care (e.g., the deletion of a lecturer requires the deletion of all his lectures and the
participations by students). But if the programmer is aware of the consequences,
he will appreciate the automatic generation of such operations as the correct
order for deletion is not always obvious.

Even if our generated transactions ensure the integrity of the affected rela-
tions, it is sometimes useful to provide a global consistency check that is regularly
applied to all data. This could be necessary if the database is modified by pro-
grams that do not use the safe interface but directly accesses the data. For this
purpose, we also generate a global consistency test that checks all persistent
data w.r.t. the ER model. If E1, . . . , En are all entities (including the implicit
entities for complex-complex relations) derived from the given ERD, the global
consistency test is defined by

checkAllData :: Transaction ()
checkAllData = checkE1 |>> ... |>> checkEn

The consistency test for each entity En is defined by
checkEn :: Transaction ()
checkEn = getDB (queryAll enEntry) |>>= mapT_ checkEnEntry
checkEnEntry :: En -> Transaction ()
checkEnEntry e = check1 |>> ... |>> checkk

where the tests checki are similar to the ones used in new and update operations
that raise transaction errors in case of unsatisfied integrity constraints.
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5 Conclusions

We have presented an API as an abstract interface for database program-
ming and a framework to compile conceptual data models specified as entity-
relationship diagrams into executable code for database programming in Curry.
This compilation is done in three phases: translate the specific ERD format into
a tool-independent representation, transform the relationships into relations ac-
cording to their complexity, and generate code for the safe access and update of
the data.

Due to the importance of ERDs to design conceptual data models, there are
also other tools with similar objectives. Most existing tools support only the
generation of SQL code, like the free software tools DB-Main6 or DBDesigner47.
The main motivation for our work was the seamless embedding of database pro-
gramming in a declarative language and the use of existing specification methods
like ERDs as the basis to generate most of the necessary code required by the
application programs. The advantages of our framework are:

– The application programmer must only specify the data model in a high-level
format (ERDs) and all necessary code to deal with this data is generated.

– The interface used by the application programs is type safe, i.e., the types
specified in the ERD are mapped into types of the programming language
so that ill-typed data cannot be constructed.

– Updates to the database are supported as transactions that automatically
checks all integrity constraints specified in the ERD.

– Checks for all integrity constraints are derived from the ERD for individual
tables and the complete database so that they can be periodically applied
to verify the integrity of the current state of the database.

– The generated code is based on a high-level interface for database program-
ming so that it is readable and well structured. Thus, it can be easily modified
and adapted to new requirements. For instance, integrity constraints not ex-
pressible in ERDs can be easily added to individual update operations, or
complex delete operations can be inserted in the generated module.

The database API and the ERD compiler described in this paper are freely avail-
able with the latest distribution of PAKCS [13]. For future work we intend to
increase the functionality of our framework, e.g., to extend ERDs by allowing
the specification of more complex integrity constraints or attributes for rela-
tions, which is supported by some ER tools, or to provide also complex delete
operations for particular entities. Finally, it could be also interesting to gener-
ate access and update operations for existing databases by analyzing their data
model. Although this is an issue different from our framework, one can reuse the
API described in Section 2 and some other techniques of this paper for such a
purpose.

6 http://www.db-main.be
7 http://www.fabforce.net/dbdesigner4

http://www.db-main.be
http://www.fabforce.net/dbdesigner4
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Hirzel, Martin 150

Keller, Gabriele 116
Koopman, Pieter 299

Launchbury, John 1
Loidl, Hans-Wolfgang 214
Loogen, Rita 248

Mandelbaum, Yitzhak 133
Mariño, Julio 18
Marpons, Guillem 18
Moniot, Thomas 2
Moreno-Navarro, Juan José 18
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