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Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practioners to present original work
emphasizing novel applications and implementation techniques for all forms
of declarative concepts, including functions, relations, logic, and constraints.
Declarative languages build on sound theoretical foundations to provide attrac-
tive frameworks for application development. Existing languages have been suc-
cessfully applied to a wide array of real-world situations, and new developments
in theory and implementation have opened up new application areas. Conversely,
applications have driven progress in the theory and implementation of declara-
tive systems, as well as benefited from this progress.

The 10th PADL Symposium was held in San Francisco, California during
January 7-8, 2008, and was co-located with the ACM Symposium on Princi-
ples of Programming Languages (POPL). From 44 submitted papers, the PADL
Program Committee selected 20 for presentation at the symposium, based upon
at least three reviews for each paper provided from PC members and addi-
tional referees. Two invited talks were also presented at the conference: one by
John Launchbury entitled “Industrial Functional Programming” and the other
by Walter Wilson entitled “Large-Scale Logic Servers in Business and Govern-
ment.”

Following what has become a tradition at PADL symposia, the PADL Pro-
gram Committee selected one paper to receive the “Most Practical Paper” award.
This year the paper judged best in terms of practicality, originality, and clar-
ity was: “Certified Development Tools Implementation in Objective Caml,” by
Bruno Pagano, Olivier Andrieu, Benjamin Canou, Emmanuel Chailloux, Jean-
Louis Colaco, Thomas Moniot, and Philippe Wang. Congratulations to these
authors for this award.

We wish to thank the Program Committee for its expertise and hard work
in selecting papers and invited talks, and General Chair Hai-Feng Guo for his
excellent organizational and administrative efforts. Special thanks also to Gopal
Gupta for his guidance and advice. We also wish to acknowledge the authors of
the EasyChair on-line paper management software, which greatly facilitated the
PC’s efforts.

The 10th PADL Symposium was sponsored in part by COMPULOG Amer-
icas, and was organized in coordination with the Association for Computing
Machinery. Thanks are also due to the University of Nebraska at Omaha for its
support. Finally, we wish to thank the authors who submitted papers to PADL
2008 and all who participated in the conference.

November 2007 Paul Hudak
David Warren
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Industrial Functional Programming

John Launchbury

Galois Inc.
12725 SW Millikan Way, Suite 290
Beaverton, OR 97005
john@galois.com

Abstract. Functional languages have been the backbone of Galois’ busi-
ness for the past eight years. They have been very good for us, but not
without their own share of challenges. In this talk, we shall stand back
and examine the practicalities of using declarative methods over a range
of projects and products, to see what works well in practice, and con-
versely where we have found the tools to fall short.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, p. 1, 2008.
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Certified Development Tools Implementation in
Objective Caml

Bruno Pagano!, Olivier Andrieu!, Benjamin Canou?3, Emmanuel Chailloux?,
Jean-Louis Colaco**, Thomas Moniot!, and Philippe Wang?

! Esterel Technologies, 8, rue Blaise Pascal, 78890 Elancourt, France
{Bruno.Pagano,0livier.Andrieu,Thomas.Moniot}@esterel-technologies.com
2 ENS Cachan, antenne de Bretagne Campus Ker Lann, F-35170 Bruz, France
Benjamin.Canou@eleves.bretagne.ens-cachan.fr
3 Laboratoire d’informatique de Paris 6 (LIP6 - UMR. 7606),
Université Pierre et Marie Curie, Paris 6,

104, avenue du Président Kennedy, 75016 Paris, France
{Emmanuel.Chailloux,Philippe.Wang}@lip6.fr
4 Siemens VDO Automotive, 1, avenue Paul Ourliac, BP 1149, 31036 Toulouse,
France
Jean-Louis.Colaco@siemens.com

Abstract. This paper presents our feedback from the study on the use
of Objective Caml for safety-critical software development tools imple-
mentation. As a result, Objective Caml is now used for the new Scade™
certified embedded-code generator. The requirements for tools imple-
mentation are less strict than those for the embedded code itself. How-
ever, they are still quite demanding and linked to imperative languages
properties, which are usually used for this kind of development. The
use of Objective Caml is outstanding: firstly for its high level features
(functional language of higher order, parametric polymorphism, pattern
matching), secondly for its low level mechanisms needed by the run-
time system (GC, exceptions). In order to develop the tools to check the
safety-critical software development rules, it is necessary to reinterpret
them for this language, and then to adapt Objective Caml so that it
satisfies them. Thus, we propose a language restriction and a simplified
runtime library in order that we can define and measure the coverage of
a program written in Objective Caml according to the MC/DC criteria.
Then we can look forward to seeing this kind of languages spread out the
industrial environment, while raising the abstraction level in the concep-
tion and implementation of tools for certified programs production.

Keywords: Code coverage, Tests measurement, Functional program-
ming, Objective Caml, Civil avionics.

1 Introduction

Safety-critical softwares are traditionally associated to embedded control systems
but some other areas need them. Standards for software development have been

* This work started while the author was at Esterel-Technologies.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 2{17] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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defined with levels determined from the safety assessment process and hazard
analysis by examining the effects, on the final users, of a failure condition in the
system. Among the most common applications, we hold up as examples flight
commands, railway traffic lights, the control system of a nuclear power plant,
but also medical equipment or a car ABd. They share the particularity that
their dysfunctions can cause catastrophes with lethal consequences for those in
relation with such a system.

The civil avionics authorities defined a couple of decades ago the certification
requirements for aircraft embedded code. The DO-178B standard [17] defines
all the constraints ruling the aircraft software development. This procedure is
included in the global certification process of an aircraft, and declines now for
other industrial sectors concerned by critical software (FDA Class III for medical
industry, IEC 61508 for car industry, etc).

The DO-178B standard imposes a very precise development process, which
preponderant activity is independent verification of each development step. In
this paper, we focus on software development and mistakes hunting procedures,
whereas DO-178B’s scope goes further. Code development as it is recognised by
certification authorities follows the traditional V-Model dear to the software en-
gineering industry. Constraints are reinforced but the principles stay the same:
the product specifications are written by successive refinements, from high level
requirements to design and then implementation. Each step owns an independent
verification activity, which must provide a complete traceability of the require-
ments appearing in this step.

The followed process to realize embedded code satisfying such a certification
requires the definition of a “coding standard”. This standard must define a set
of strict rules for the specifications’ definition, for the implementation and for
the traceability between specifications and realizations. In particular, the coding
standard must put forward the obligation to cover the entire code. The DO-
178B certification imposes this coverage to be done according to the MC/DC [10]
measure (Modified Condition/Decision Coverage).

The DO-178B standard applies to embedded code development tools with the
same criteria as the code itself. This means that the tool development must follow
its own coding standard. The certification standard originally targeted only em-
bedded software, so its application for a development tool must be adapted. For
instance, for a code generator it is accepted to use dynamic allocation and have
recursive functions. The specificity of the certification process for tools is under
discussion to be explicitly addressed by the forthcoming DO-178C standard that
will be effective in a few years.

In this context, tools development in a particular language must comply with
DO-178B constraints, which means having an MC/DC coverage of the program’s
source. Likewise, the runtime library, if there is one, must be certified. For the C
language, this translates to the control of libc calls and compiler mechanisms
verification. For more modern languages, such as Java, it would demand the
certification of the whole library.

1 Anti-lock Braking System.



4 B. Pagano et al.

Objective Caml (OCaml) is particularly suitable for compiler conception and
formal analysis tools. As well as itself [I3], it is used in Lucid Synchrone [15], the
a la Lustre language for reactive systems implementation, or the Coq [I6] proof
assistant implementation. Even ten years ago, the use of the OCaml language
in software engineering for safe real-time programs development interested some
major avionics industries (Dassault). The experience of Surlog with AGFL shows
that OCaml can be integrated in a critical software development process and that
it brings in its well-founded model. With Astrée [§], OCaml proves its adequacy
for critical software tools realization.

The Esterel-Technologies company markets Scade [2I4], a model-based devel-
opment environment dedicated to safety-critical embedded software. The code
generator of this suite that translates models into embedded C code is DO-178B
compliant and allows to shorten the certification process of avionics projects
which make use of it. The first release of the compiler was implemented in C
and was available in 1999 (version 3.1 to 5.1 were based on this technology), but
since 2001, Esterel-Technologies has prepared its next generation code generator
based on a prototype written in OCaml. This work allowed to test new compil-
ing techniques [7] and language extensions [0]. It has now appeared that OCaml
allowed to reduce the distance between the specifications and the implementa-
tion of the tool, to have a better traceability between a formal description of the
input language and its compiler implementation.

In a more classical industrial environment, where C or Ada languages dom-
inate, and where development processes use intensive tests, the introduction
of OCaml changes the formulations of qualification problematics. Many of its
language features surprise control theory engineers or imperative languages pro-
grammers, first because OCaml is an expression language, but also because it
provides higher level features such as parametric polymorphism, pattern match-
ing, exception handling and automatic memory management [11] (Garbage Col-
lector or GC).

Conversely, code coverage and conditions/decisions notions are defined and
well understood for imperative languages like the C language. So we need to
adapt this notion to OCaml Boolean expressions. Functional programming and
parametric polymorphism are the main concerns in this evolution of MC/DC
code coverage specification. It is also necessary to adapt the runtime library to
fit the coding standards, and advisable to bring control points between specifica-
tions and runtime library for the control (general apply mechanism, exceptions
handling) and for automatic memory management. This makes the use of the
Inria original language runtime library difficult and militates for the building of
an alternate compatible runtime library.

The rest of this paper is organized as follows. Section 2 exposes the valida-
tion process in an industrial context. Section 3 explains the adaptation of code
coverage for OCaml programs and describes our implementation called micov.
Section 4 shows how to certify OCaml programs and then details how the run-
time library must be modified. Section 5 compares different approaches to use
OCaml and presents our future work.
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2 Code Verification in a Certified Context

The American federal aviation administration (FAA) requires any computer pro-
gram embedded in an aircraft to respect the DO-178B standard to allow it to
fly. Several levels of criticity are defined (A, B, C, etc.) and applied according to
the impact of a software bug on the whole system and passengers. For instance
comfort application like entertainment or air-conditioning are less critical than
flying command system.

The DO-178B is highly rigorous about the development process but does not
give any constraint, neither on the programming language to use nor even about
the paradigms it has to implement. However rules exist to precise this standard
and drastically restrain the type of accepted programs. At level A, which applies
to the most critical programs, an embedded program cannot dynamically allocate
memory, use recursive function and generally speaking has to work in bounded
time and space with known bounds. For this kind of development, using OCaml
or any other high level language is not an option. Usually, only assembly language
and limited subsets of C and Ada are used.

Nevertheless, it is allowed, and becoming more and more necessary, to use
code generators and/or verifiers to help writing these programs, if these tools
are themselves certified at the same level of the standard. For example, the code
coverage measurement, about which we will speak later, can be done by human
code reviewers or by a software if it is itself certified at the appropriate level.
This level is a bit relaxed for verification tools as they cannot directly affect the
embedded application.

When it comes to tools development, some of the most constraining rules can
consensually be broken, given that the fundamental demands are fulfilled. For
example, if recursion or dynamic memory allocation are allowed, it must be re-
strained to memory configurations where the stack and the heap are large enough
not to interfere with the ongoing computation. Even if, unlike an embedded soft-
ware, a tool can fail, it must provably never give a false result. Therefore, the veri-
fication activities take a preponderant amount of time in the development process.

Tests: coverage measurement criteria: During an industrial process, the code
verification stage takes place after the development and is meant to show that
the product matches its specifications. Testing software requires a stoping cri-
teria to state that the behavior of the program is reasonably explored as it is
well known that exhaustivness is unreachable. Coverage measurement is the tra-
ditional answer from the software engineering community to define the good
compromise between loose verification and theoretical limits. On this particular
point, the DO-178B standard has a very precise requirement by demanding a
complete exploration of the code structure in the MC/DC sense. The DO-178B
defines several verification activities and among these a test suite has to be con-
stituted to cover up the set of specifications of the software to verify and thus
its implementation. The standard requires each part of the code to be used in
the execution of at least one test and conform to its specifications.

The structural coverage criteria can be separated into the data flow ones and
the control flow ones. The data flow analysis measures the relation between the
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assignments and uses of variables. The DO-178B only defines criteria over the
control flow. The control flow is measured on executed instructions, Boolean
expressions evaluated and branches of control instruction executed. We will now
present the main measurements.

— Statement Coverage: It is the simplest criterion, to understand as well as to
apply. It consists in verifying that each instruction of the tested program is
executed by at least one test. Such a criterion is considered fragile as shown
in the next example.

— Decision Coverage: A decision is the Boolean expression evaluated in a test
instruction to determine the branch to be executed. This coverage requires
each decision to be evaluated to the two possible values during the tests,
ensuring that all code branches are taken.

The following C code example, defining the absolute function over inte-
gers, exposes the difference between these two criteria:

int abs(int x) {int y; if (x<0) y = -x; return y;}

A unique test with a negative value for z is sufficient to cover all the instruc-
tions, however the decision coverage needs a second one with a positive value.
This little code is sufficient to prove that decision coverage can detect more
incorrect programs, since with a positive value, a random value is returned
by the function instead of the identity whereas such a test is not needed by
the statement coverage.

— Condition Coverage: A condition is an atomic subexpression of a decision.
For example, the decision x && (y<0) || £(z) contains the three conditions
x, y<0 and £ (z). A condition is covered if tests exist in which it is evaluated
to true and false.

— Condition/Decision Coverage: The C/DC is the combination of the two
previous criteria.

— Modified Condition/Decision Coverage: The MC/DC extends the C/DC
criterion by requiring each condition to independently modify the decision
value. In other words, for each condition ¢, two tests have to exist which
must change the decision value while keeping the same valuations for all
conditions but c.

— Multiple Condition Coverage: For this criterion, the tests must generate
every Boolean combinations of the conditions of each decision.

Let us now illustrate these definitions by showing the tests required by each
of the criteria for the test instruction if ((a || b ) && c) { ... }. Eight
tests exist for this instruction which are the different valuations of the Boolean
variables a, b and c. We shall name these valuations test vectors and use the
notations [TTT T1, [FTT T1, [TFT T1, [FFT F1, [TTF F1, [FTIT F1, [TFT F]
and [FFF F]. They correspond to the truth table of the expression.

The required tests vary according to the coverage criterion:

— Statement Coverage: a unique test giving the value T to the condition is
necessary
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— Decision Coverage: Two tests are necessary, one of them giving T and the
other F, for example [TTT T] et [FTT F].

— Condition Coverage: Each condition has to take the two values, therefore
two tests which give different valuations to every condition are sufficient, for
example [TTF F] et [FFT F] (note that this example does not satisfy the
decision coverage criterion).

— C/DC: As in the previous case, we must provide two tests which give different
valuations to every condition but now they must give a different value to the
decision too, for example [TTT T] et [FFF F].

— MC/DC: For each condition, we must exhibit two tests in which only this
condition and the decision result differ. For example, the two test vectors
[TFT T] and [FFT F] show the independence of the condition a. The test
vectors may be used to show the independence of more than one condition.
Usually, N+1 test vectors are necessary for a decision with N conditions. For
this example, the four test vectors [TFT T], [FTT T], [TFF F] and [FFT F]
are sufficient.

— Multiple Condition Coverage : By definition, the eight vectors of the truth
table detailed before has to be be provided.

The DO-178B level A certification requires the whole program code to have a
100% MC/DC measurement. The MC/DC criterion turned out to be a reason-
able compromise between a too weak requirement of two tests and an unreachable
one of 2" tests.

The relevance of the MC/DC criterion has been profusely discussed [9I12]. Our
aim is to show the meaning of this measurement in OCaml since it is required
by the civil avionics agencies. An important point to understand is that the
MC/DC analysis of the code is one element of the validation process of every
development step. Therefore, even if it is possible to work around the coverage
analyses by coding tricks in theory, these tricks will be rejected by the persons in
charge of reviewing the code or validating the MC/DC measurement in practice.

3 Code Coverage of OCaml Programs

According to Chilenski et al. [I0], code coverage is not a test technique: it should
be considered as a measure describing the degree to which the source code of a
program has been exercised. In this section, we give a definition of the MC/DC
criteria from the viewpoint of OCaml programs. We restrict to the functional
and imperative features of OCaml, which correspond to the subset allowed by
the coding rules of the Scade to C compiler. This subset remains quite large (cf.
paragraph B3]), for instance, it is sufficient to compile the standard library of
the OCaml distribution.

3.1 Coverage of Expressions

We need to adapt the definition of code coverage to a functional language like
OCaml. With respect to imperative languages, the notion of coverage is related
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to the statements of a program. Since OCaml is an expression language, we will
be interested in the coverage of the expressions evaluation.

In the imperative paradigm, coverage shall pinpoint that every execution
branch in the program has independently been exercised. The same is encoun-
tered in the OCaml language, since some sub-expressions (in the case of the
conditional expression, for instance) may remain unevaluated.

if (x<y) { . As well as the.coverage of the C pro-
min = f(x); let min = gram shows which branch of the if con-
} else { if x<y trol structure has been executed, cov-
min = f(y); then f x erage of the OCaml program examines
} else f y which sub-expression of the if operator

has been evaluated.

Coverage is measured by instrumenting the source code of the program. With
respect to OCaml, we state that an expression has been covered as soon as
its evaluation has ended. The main idea of the instrumentation algorithm is to
replace each expression expr with (let aux = expr in mark(); aux), where
the variable aux is not free in expr and mark() is a side-effect allowing to record
that this point of the program has been reached.

Some constructions of the OCaml language (such as if then else) may in-
troduce several execution branches. Coverage of expressions entails to trace the
evaluation of each one of the branches independently. In order to avoid over-
marking, we split the instrumentation algorithm into two mutually recursive
translation functions F and G. Both F and G instrument the execution branches
of the program, but only F marks the end of evaluation of expressions. Here is
the definition of the instrumentation functions, together with some explanation
of the interesting cases:

F(k) =mark(); k if k is a constant or a constant constructor

Since we (statically) know that the evaluation of a constant value or constructor
never fails, we can simplify the translation and write F(k) = markQ; k.

Flid) = fun x — mark(Q); id x if id has a functional type
W= mark(); ¢d otherwise

Note that F n-expands every top-level functional value (F(id) = fun ¢ —
mark(); id x) so that the algorithm is still type-preserving. Otherwise, it would
produce weak type variables.

mark(); G(f) G(x) if f does not return
F(f z) =1 G(f) G(z); mark() if f x has type unit
let auzr = G(f) G(x) inmark(); aux otherwise

A heuristics is implemented in order not to trace the end of evaluation of a
family of functions that do not return, such as failwith and exit: we look
for functions with type Ya.r — « , where the polymorphic type variable «
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does not appear in 7. Indeed, the application of any of those functions does
not terminate, which implies that structural coverage would never be reached if
they were instrumented in the usual way. Instead of the normal case, we write
F(f x) = mark(); G(f) G(z). Unfortunately, this heuristics suffers from both
false positives and false negatives, since it may be fooled by type annotations.

As a shortcut, we define F(f z) = G(f) G(x); mark() when the type of f x
is unit, since the type of mark () is unit too.

F(funzx — e)=funz — F(e)
Fler; e2) =G(ex); Flez)
F(if e; then ey [else e3]) = if G(e;) then F(ez) [else F(es)]
F(while e do ey done) = while G(eq) do F(ez) done; mark()
)
)

let z = G(eq) in F(eg)
matchG(eq)with p;
[whenG(ea) — F(e;)]
F(try e withp; — e;) = try F(e) with p; — F(e;)
F((e1, e2)) = mark(); (G(er), G(ea))
F(C(e)) =mark(); C(G(e))

F(let z = e1 in e

F(match ey with p; [when es] — ¢

x if z is a constant value or an identifier

g(f) 9(x)

G(funzx — e)=funz — F(e)

G(z) =
)=
)=
Gle1; e2) =Gle1); Gle2)
)
)
)
)

G(f =

if G(e1) then F(ez) [else F(es3)]
=while G(e;) do F(ez) done
let x = G(e1) in G(ea)
=match G(e;) with e;
[whenG(e2)] — F(e;)
G(try e with p; — e;) =try G(e) with p; — F(e;)
G((e1, e2)) = (G(er), Gle2))
G(C(e)) = C(G(e))

G(if e; then ey [else eg]

G(while ey do ey done

G(let x = e; ineo

G(match e; with p; [when es] — e;

Correction of the instrumentation. Since mark() has type unit (computes by
side-effect), the translations defined by functions F and G do not alter the types
of the expressions being instrumented. Furthermore, they do not alter the value
computed by this expression.

A program is structurally covered when every call to mark() in the instru-
mented source code has been reached.

Tail recursion: Tail recursion is not a feature of OCaml or of functional lan-
guages. It is a property of a function, in which the last operation is a recursive
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call. Such recursions can be easily transformed into iterations: this is known
as the tail call optimization. Replacing recursion with iteration can drastically
decrease the amount of stack space used and improve efficiency.

Our instrumentation algorithm, consisting in adding a side-effect after each
expression, systematically breaks tail calls, thus forbidding the optimization
mentioned above. In pratice (with the Scade compiler typically), we were not
confronted with cases in which the instrumentation of the program led to a
stack overflow.

3.2 MC/DC Coverage

According to the DO-178B standard, MC/DC is fulfilled when every point of
entry and exit in the program has been invoked at least once, every condition in
a decision has taken on all possible outcomes at least once, and each condition
has been shown to affect that decision’s outcome independently.

With respect to the OCaml language, we chose to define an MC/DC deci-
sion for each expression of type bool (except the Boolean constants true and
false). Then, MC/DC conditions are determined by syntactically looking for
the Boolean operators not, && and | |. We propose to transform every Boolean
expression into a bunch of nested if then else. Here is the translation scheme:

Fp(not e, I,

Foler && ea, I,

Fo(er Il ez, 1,

Fp(if e1 then es else eg, [,

(e, r, 1)

(er, Fulea, 1, 1), 1)

(e, I, Fulea, I, 1))

(ex, Fulea, 1, 1), Files, I, 1))

I
R R

r
r
r
r

Fp(e, I, r) = if set_condition(); e then !l else r otherwise

Thence, the MC/DC instrumentation M of a Boolean expression e can be
defined straightforwardly:

M(e) = Fp(e, set_outcome(); true, set_outcome(); false)

where set_condition() and set_outcome() are side-effects (of type unit) al-
lowing to update respectively the value of the current condition and the value
of the decision’s outcome.

Example. The following Boolean expression is composed of four independent
conditions. Here they are single variables, but could also be replaced with more
complex expressions.

let pred a b cd= (a || b) & (¢ || d)

There are 2% possible tests. Coverage of expressions requires 2 tests, whereas
MC/DC needs 5. The F, translation reveals 7 calls to set_outcome () ; , thus
the 2% test cases fall into 7 classes according to the way they affect our counters.



Certified Development Tools Implementation in Objective Caml 11

let pred a b ¢ d = (€ abcd —p %)
if a then
if ¢ then true (1 :T T — T %)
else if d then true (2 : T FT —>T %)
else false (x3: T FF —>F %)
else if b then
if ¢ then true (x 4 FTT — T %)
else if d then true (x 5 FTFT — T %)
else false (x 6 FTFF — F %)
else false (x 7 FF —> F %)

Let us find, for each condition, which test pairs are sufficient to prove that
the decision’s outcome is independently affected:

a: (L)+(7) b:4)+(7) c:(1)+(3)or (4)+(6) d:(2)+(3) or (5)+(6)
which leads us to the following minimal sets:

{(1), (2), 3), (4), (N} or {(1), (4), (5), (6), (7)}
As a consequence, full MC/DC coverage can be achieved with 5 tests, which
confirms the theoretical result. Mind that our translation is only required to
measure MC/DC coverage, it isn’t a method to derive a minimal set of test
cases from the source code: hence the discrepancy between the 5 tests required
for full MC/DC coverage and the 7 possible tests. In other words, it is not

necessary to cover the translated version of the decision in its entirety to fulfill
the MC/DC criterion.

3.3 Implementation

We developed a tool capable of measuring the MC/DC rate of OCaml programs.
The tool first allows to create an instrumented version of the source code, to-
gether with a trace file. Then, the user has to build the instrumented code with
the Inria OCaml compiler. Running the instrumented executable leads to (in-
crementally) updating the counters and structures of the trace file. Finally, the
coverage results are presented through HTML reports, that are generated from
the information collected in the trace file.

Our tool is built on top of the front-end of the INRIA OCaml compiler. A
first pass is always done, prior to the instrumentation stage, in order to reject
OCaml programs that do not comply with the coding rules related to the Scade
compiler. For instance, we do not support objects, polymorphic variants, labels
and optional arguments, nor the unconventional extensions (multi-threading,
support for laziness, recursive values and modules).

Performance Results. Performances are quite good with respect to programs
that contain a lot of pattern-matching and a few recursive calls. Thus, the Scade
to C compiler has been successfully instrumented and used to compile non trivial
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Scade programs. The instrumented version of Scade compiler runs almost as fast
as the original one.

Scade compiler instrumented Scade compiler
number of lines 30 000 53 500
execution time on a large 27.6s 28.1s
Scade model (8 120 lines)

On the contrary, performances are very degraded with OCaml programs that
use recursion intensively, such as a naive implementation of fibonacci. Indeed,
in those cases, counters can be hit several millions (even billions) of times,
whereas in the case of Scade they are updated a few hundreds or thousands
of times only.

The n-expansion of polymorphic variables can introduce a lack of performance
with a program that uses intensively the higher-order features of the language.
This lack has not been measured, but the cost of abusive closure constructions
is well known for any functional language developer.

The lack of performance is not a point to our purpose because the instru-
mented code is only used to measure the coverage of the code. So it will be used
in a large set of tests; but it is used on real application cases. Most of cases,
including the Scade compiler, the tests needed by the coverage of the source
code are small and the instrumented code performs quite well (less than 5%
of overcost). Furthermore, the code coverage analysis is a heavy process: tests
building, test validation, coverage results analysis, ...In this context, the slight
lack of performance is not relevant.

4 Certification of OCaml Programs

The DO-178B certification of an application applies on the final executable. Thus
the analysis must be applied to the source code of the progam itself but also on
the library code used by the program. A typical OCaml program such as the
Scade compiler uses two kind of library code: the OCaml standard library which
is itself written in OCaml, and the runtime library, written in C and assembler;
both libraries are shipped with the OCaml compiler and are automatically linked
with the final executable.

The standard library contains the interfaces manipulating the datatypes pre-
defined by the OCaml compiler (integers, strings, etc.), the implementation of
some commonly used data structures (hash tables, sets, maps, etc.) and some
utilitary modules (command line parsing, printf-like formatting, etc.). The run-
time library contains:

— the implementation of some library functions that cannot be written in pure
OCaml because they need access to the in-memory representation of OCaml
values: the polymorphic comparison function, the polymorphic hashing func-
tion, the serialization/deserialization functions;



Certified Development Tools Implementation in Objective Caml 13

— library functions that need to interact with the host OS, most notably the
I/0 functions;

— low-level support code that is required for the execution of OCaml pro-
grams: memory management functionality, exceptions management, support
for some function calls, etc. Use of this code is not always traceable to the
original source in OCaml, it is often introduced by the OCaml compiler.

The difficulty of specifying and testing such low-level library code (as required
by the DO-178B process) lead us to adapt the runtime library so as to simplify it.

4.1 Modifications to the Runtime Library

The bulk of the modifications was to remove features unessential to our spe-
cific application, the Scade compiler. This is a program with a relatively simple
control flow and very little interaction with the OS: its inputs consist only of
command line arguments and text files, its outputs are also text files.

First, the concurrency support was removed from the runtime. OCaml pro-
grams can use POSIX signals and multi-threading but this feature is dispensable
when writing a compiler.

Similarly, the support for serialization and deserialization of OCaml values was
removed. Furthermore these functions are not type-safe and thus can compromise
the safety guarantees of the OCaml type system.

Most of the work consisted in simplifying the automatic memory manage-
ment subsytem. Indeed the garbage collector (GC) of OCaml is renowned for
its good performances; however it is a large and complex piece of code. It is a
generational GC with Stop&Copy collection for the young generation and incre-
mental Mark&Sweep collection for the older generation; it supports compaction,
weak pointers and finalization functions. We successfully replaced it by a plain
Stop&Copy collector, thus eliminating features unnecessary to our compiler such
as weak pointers and finalization. The collector is no longer incremental, which
implies that the execution of the program may be interrupted for a large amount
of time by the collector, however this is of no concern for a non-interactive ap-
plication such as a compiler.

Simplifying this part of the runtime library was difficult because of its tight
coupling with the OCaml compiler. Indeed, both this memory manager code and
the compiler must agree on the in-memory representation of OCaml values and
on the entry points of the memory manager. Furthermore, the OCaml compiler
inlines the allocation function of the memory manager for performance reasons.
All in all, we had little leeway in replacing this code: it practically had to be
Stop&Copy collector and we had to keep some of the symbol names. However
we were able to obtain complete coverage of this simplified GC, despite the fact
that it is difficult to test since most of the calls are not explicit in the original
OCaml source code.

The OCaml standard library is less problematic concerning certification. Most
of it is written in plain OCaml and certification of this library code is no more
difficult than that of the application code. Some of the more complex modules
such as the printf-like formatters were simply removed.
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The only notable modification of the standard library is the support of over-
flows in integer arithmetics. The built-in integers in OCaml implement a signed
31 bit (or 63-bit, depending on the platform) wrap-around arithmetic. To be
able to detect overflows, the basic arithmetic functions were replaced by wrap-
per function that check the result and raise an exception in case of overflow.

4.2 Performance Results

The modifications of the runtime library that can impact the program’s perfor-
mance are the new GC and the overflow-checking arithmetic operations; other
modifications are merely removal of unused code and do not alter performance.
Tests were done on the (non-instrumented) Scade compiler running with the
same large Scade model as in section B3l

To check the impact of overflow checks, we tested our modified runtime library
with and without overflow detection. No measurable difference could be seen.
This is expected as the Scade compiler does very few arithmetic computations.

To measure the performance of the GC, we measured the total running time
of the program and the top memory consumption; individual collection time was
not measured (as mentioned earlier, “pauses” in the execution due to the GC are
not a concern for a compiler). We found the Scade compiler to be approximately
30% slower than with the regular OCaml GC. The memory footprint reached
256 MB vs. 150 MB with the regular GC. This was expected: Stop&Copy GC
are not very memory-efficient: due to their design, no more than half the memory
used by the GC is available to store program data.

5 Discussion

5.1 Approaches

Our approach in this article is to focus directly on OCaml programs and on the
OCaml compiler from Inria. To ensure compatibility of this approach with the
Scade compiler, we have restricted the OCaml language to its functional and
imperative core language, including a basic module system. The runtime library
pointers, serialization ...) has also been simplified. One pending difficulty is to
explain compilation schemes for language features and their composition.

Another approach to certificate OCaml programs would be to use a compiler
from ML to C [T9J5] and then to certify the generated C code by using tools for C
code coverage. Once again the main difficulty is to check the GC implementation
of the runtime library; GC with ambiguous roots using [3] or not [5] the C stack
may “statistically” fail the certification. The simple GC as Stop&Copy [L1] are
not appropriate to the C language because they move their allocated values,
mainly GC regarding the C stack as roots set.

A third approach, which can be compatible with the first, is to use a byte-code
interpretor. Its strengh is to improve control to manage stack and exceptions.
Moreover, an interpretor gives the possibility to analyse the program coverage
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during execution and not only by its instrumentation. A Just in Time translator
can be added to improve performances [I8]. A JIT transformation is easier to
explain and to describe during the certification process than an entire compiler,
mainly because its optimisations are less complex.

These three approaches allow the use of high level languages to develop tools
for embedded softwares. This will reduce the development life cycle and simplify
the certification process.

5.2 Future Work

The pattern matching is one of the most important features of the OCaml lan-
guage. It can be considered both as a control structure and as the only way to
build accessors to complex values. Moreover, the static analysis [I4], used by the
OCaml compiler, ensure some good properties. In this paper, we consider that a
pattern matching instruction is covered by a single test for each pattern of the
filter. This is sufficient with respect to the definition of MC/DC requirements
which are only applicable on Boolean expressions. An extension of the cover-
age principles is to consider a pattern matching as multiple conditions and to
require to cover the independance between any of the condition. For instance,
the pattern x::y::1 -> matches any list of at least two elements; intuitively, it
expresses two conditions: the list is not empty and the the tail of the list is not
empty too. A more precise coverage measure can ask to have two different tests
for this pattern.

The more modern features of OCaml [I] are not necessarily wished by the
certification organizations to design critical softwares. For instance the object
programming, a la C++, is not yet fully accepted by the DO-178B; and the
row polymorphism from the OCaml object extension may not satisfy all their
criteria. In the same way, polymorphic variants bring a concept of extensibility
that is not compatible with the critical software development, which requires
comprehensive specifications for all used data structures.

On the other hand, the genericity of functors (parametric modules) is valu-
able to build this kind of tools, but when a functor is applied, the same types
constraints than parametric polymorphism have to be checked These restrictions
are under study. A simple solution to properly cover parametric modules is to
consider independently any of its monomorphic instance. But this solution leads
to demand more tests than the necessary ones: when a part of a functor does
not use some arguments, it can share the same tests to ensure the coverage.

6 Conclusion

For the community of statically typed functional languages, usual arguments
on quality, safety and efficiency about code written in OCaml are well known
and accepted for a long time. Nevertheless, convincing the authorities of certifi-
cation requires to respect their measuring criteria of quality. This development
has shown that the concepts of MC/DC coverage could be used for a function-
al/imperative subset of OCaml and its simplified runtime. Although it is not
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applicable to embbed code written in OCaml, satisfying criteria from DO-178B
gives to OCaml the capabilities to specify and to implement tools for design of
critical softwares.

The Scade compiler of Esterel Technologies is such a tool, it has been certified
DO-178B level A by the American and the European civil aviation administra-
tions; it is used for instance by Airbus, Pratt and Whitney and many others. Pre-
viously implemented with the C language, the compiler of the version 6 of Scade
has been written in OCaml and will be submitted to the qualification procedures.
The code coverage analysis will be performed by the mlcov tool described in this
paper. Notice that mlcov needs to be DO-178B level C certified which is a neces-
sary condition to be used in a DO-178B level A cycle development.
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Abstract. An extended practice in the realm of Software Engineering
and programming in industry is the application of coding rules. Coding
rules are customarily used to constrain the use (or abuse) of certain pro-
gramming language constructions. However, these rules are usually writ-
ten using natural language, which is intrinsically ambiguous and which
may complicate their use and hinder their automatic enforcement. This
paper presents some early work aiming at defining a framework to for-
malise and check for coding rule conformance using logic programming.
We show how a certain class of rules — structural rules — can be refor-
mulated as logic programs, which provides both a framework for formal
specification and also for automatic conformance checking using a Prolog
engine. Some examples of rules belonging to actual, third-party coding
rule sets are discussed, along with the corresponding Prolog code. Exper-
imental data regarding the practicality and impact of their application
to real-life software projects is presented and discussed.

Keywords: Coding rule checking, Declarative domain-specific languages
and applications, Logic programming, Programming environments.

1 Introduction

Although there is a trend towards increased use of higher-level languages in the
software industry, offering convenient programming constructs such as type-safe
execution, automatic garbage collection, etc., it is equally clear that more tra-
ditional programming languages like C (which is notorious for fostering dubious
practices) remain very popular. The reasons for this range from efficiency con-
cerns (especially on embedded platforms), need for compatibility with existing
products, or the simple fact that a huge amount of acceptably trained program-
mers are available.
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However, a good usage of a language like C involves using the language in a
disciplined manner, such that the hazards brought by its weaknesses and more
error-prone features are minimised. To that end, it is common to require that
code rely only on a well-defined subset of the language, following a set of coding
rules. For C, for example, MISRA-C [I], elaborated by The Motor Industry Soft-
ware Reliability Association (MISRA), is one of the leading initiatives, mainly
fostered by the British automotive industry but later applied to other realms.
MISRA-C contains a list of 141 coding rules aimed at writing robust C code for
critical systems. Examples of typical coding rules for C are “all automatic vari-
ables shall have been assigned a value before being used” and “functions shall not
call themselves, either directly or indirectly.” For C4++ no equally accepted set of
coding rules exists, but a notable initiative is High-Integrity C++ (HICPP [2])
which provides around a hundred coding rules for C++.

Another use of coding rules is to enforce domain-specific language restrictions.
Java Card [3], for example, is a subset of Java for programming Smart Cards.
In such an environment memory is scarce, and coding rules typically forbid
language constructs that may lead to heavy memory usage. At the other end of
the spectrum, each organisation — or even project — can establish its own coding
rule sets.

However, no matter who devises and dictates the coding rule set, for it to be
of practical use, an automatic method to check code for conformance is needed [T
Added to the intrinsic difficulty of mechanically checking rules, they are typically
described using (necessarily ambiguous) natural language, which shifts the diffi-
culty of interpreting them to whoever implements the checking tool. Still there
exists a number of commercial quality assurance tools from vendors such as TAR
Systems (http://www.iar.com)and Parasoft (http://www.parasoft.com)that
claim to be able to check code for compliance with a subset of MISRA-C. Other
tools, for example Klocwork (http://www.klocwork.com), define their own list
of informally described checks aimed at avoiding hazards. But, in absence of a
formal definition of rules, it is difficult to be certain about what they are actu-
ally checking, and two different tools could very well disagree about the validity
of some particular piece of code with respect to, e.g., the same MISRA-C rule.

This paper presents a framework to precisely specify rule sets such as MISRA-
C and to, later, automatically check (non-trivial) software projects for confor-
mity. In the rule-coder side, a logic-based language will make it possible to easily
capture the meaning of coding rules; this language will be compiled into a Prolog
program with which code conformity is checked.

This work is developed within the scope of the Global GCC project (GGCC,
[4]), a consortium of European industrial corporations and research labs funded
under the Eureka/ITEA Programme. GGCC aims at extending the free GNU
Compiler Collection (GCC) with project-wide optimisation and compilation ca-
pabilities (Global GCC). In the context of GGCC, we seek the inclusion of a
facility to define new sets of coding rules, and providing mechanisms to check
code compliance using a logic programming engine and making heavy use of the

1 Although some rules may be undecidable, finally needing human intervention.
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static analysers and syntax tools already present in GCC. Such a mechanism for
extensibility is a requirement for many organisations of the GGCC Consortium
having their own coding policies or the necessity to adapt existing ones.

Since GCC is a multi-language compilation framework, it is natural to provide
support to express coding rules for different target languages. We have initially
focused on C, C++, and Java since they are widely used in industry, in particular
by the industrial partners of the GGCC project. Throughout the paper, however,
we will only consider C++ (and HICPP).

The rest of the paper is structured as follows: Section [2] contains a classifica-
tion of coding rules. Our framework for rule validation is presented in Sect.
Section [ explains how structural rules can be specified using logic programs,
first introducing some key examples and then focusing on those constructs that
occur in rules more often. Experimental results obtained with a small proto-
type are presented in Sect. Bl Section [(] comments on related work and Sect. [
concludes.

2 A Classification of Coding Rules

In order to make an initial classification of coding rules, which is needed to have
an idea of the difficulty of the task and the type of code schemata we will have
to deal with, a survey was conducted within the project partners asking for
examples of coding rules internally followed in their organisations. This gave us
clues about which types of rules were actually perceived as interesting in order
to focus primarily on them. In parallel, We analysed in some detail MISRA-C
and HICPP, which resulted in a categorisation, shown below, of coding rules
which roughly ranks the difficulty of formalising them and of verifying they
are met:

Trivial. The existence in the source code of a simple pattern that can be ex-
pressed with a regular expression violates the rule. E.g.: “Do not call the
malloc() function” (MISRA-C, rule 20.4).

Syntactic. Slightly modifying the grammar (e.g., by eliminating productions)
or the lexical analysis, is enough to catch violations to the rule. E.g.: “Do
not use the ‘inline’ keyword for member functions” (HICPP, rule 3.1.7).

Type-enforceable. An extended type system is needed to deal with it. E.g.:
“Fxpressions that are effectively Boolean should not be used as operands to
operators other than &&, |1, and '” (MISRA-C, rule 12.6).

Structural. The rule has to do with permanent relations between objects in
the code. Information not present in the Abstract Syntax Tree (AST) but
completely static, such as the inheritance hierarchy, needs to be analysed.
E.g.: “If a virtual function in a base class is not overridden in any derived
class, then make it non virtual” (HICPP, rule 3.3.6).

Dynamic. The rule refers to sequences of events occurring at runtime. Control
flow graph information is typically taken into account, but many other things
might be necessary, as amemory model, pointer alias, or data-flow information.
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E.g.: “All automatic variables shall have been assigned a value before being used”
(MISRA-C, rule 9.1). Due to their own nature, automatically checking these
rules poses, in general, a series of problems whose solution needs information
which can, at best, be approximated using static analysis.

Hard to automate. Either the rule is difficult to formalise or it involves non-
computable properties: for instance, whether two procedures compute the
same function or not. E.g.: “Behaviour should be implemented by only one
member function in a class” (HICPP, rule 3.1.9).

As it is clear that very different verification techniques are required to deal
with different classes of coding rules, we have decided to focus first on structural
rules, i.e., those that depend on static relations among objects in the code. On
one hand, these were perceived as interesting by industrial project partners and,
on the other side, a customary research on the literature threw the result that
these aspects of software construction had not been treated with the depth they
deserved. More than 20 rules of this kind have been detected in HICPP and
MISRA-C.

It is interesting to note that, with the exception of the last category, a signifi-
cant part of the information needed to deal with these rules are already gathered
by modern compilers, in particular by GCC. Needless to say, rules of a certain
category may require machinery characteristic of previous categories.

3 Rule Validation Framework

Our selection of basic framework components stems from the observation that,
in general, structural coding rules are not very complex (in a linguistic sense).
They do not need to deal with time, and they do not need to, e.g., model beliefs
or approximate reasoning, either. Therefore, first order logic increased with sorts
(as we will see later) seems a well-known and completely adequate formalism.

Detecting whether some software project violates a particular rule can be
made as follows:

1. Express the coding rule in a suitable logic, assuming an appropriate repre-
sentation of the entities the rule needs to know about. This is a one-time
step, independent from the particular software project to be checked.

2. Transcribe the necessary program information into the aforementioned rep-
resentation. This is necessary for every project instance.

3. Prove (automatically) whether there is a counterexample for the rule. In that
case the rule is not met; otherwise, the code conforms to the rule.

The framework that we propose for structural coding rule validation of C++
development projects is depicted in Fig.[Il On its left-hand side we see that struc-
tural coding rules are formulated in a domain-specific language termed CRISPH
which is compiled automatically into Prolog predicates for checking. CRISP is

2 CRISP is an acronym for “Coding Rules In Sugared Prolog”.
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Fig. 1. Coding rule validation workflow

an expressive first-order logic based specification formalism that extends Prolog
with sorts, full constructive negation and universal quantification. As some fea-
tures depend on the programming language being analysed, there is a family of
languages (CRISP},) parametrised by the actual programming language (L).

While, as we will see, Prolog can be used to express structural rules, making
it the native language for specifying coding rules has several drawbacks: people
writing or reading the rules are not likely to be Prolog experts, full Prolog
contains too much extra (perhaps non-declarative) stuff that does not fit in our
setting and which needs care regarding e.g. evaluation order and instantiation
state of variables, etc. Moreover, a proper compilation of rules into Prolog will
demand a careful use of several extensions to the language. The use of a domain-
specific language will therefore maximise declarativeness and will also allow the
CRISP compiler to focus on those constructions that appear more often or which
are critical in terms of efficiency.
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However, as CRISP is still in an early stage of definition — we plan to gather
as much information as we can from the experiments and potential users of the
language — we will in this paper refrain from discussing it further, and will focus
instead on the Prolog implementation of rules.

In our approach we transcribe the violations of coding rules as Prolog predi-
cates, their arguments being the entities of interest to the programmer. In this
way the verification method can return references to the elements in the source
code which have to be corrected. Furthermore, coding the negated form of a rule
as a logical formula results more natural in many cases.

On the right-hand side of Fig. [[l gathering of structural information from
a particular C++ software development project is depicted. To extract this
information we are currently taking advantage of the source code analysing
tool Source-Navigator [5], that generates a database of architectural and cross-
reference information of a software projectﬁ A set of Prolog facts representing
the same structural information is automatically generated from the Source-
Navigator knowledge database.

Validating the C++ software development project against the coding rules is
then realised by executing, in the Ciao Prolog System [6], each of the Prolog
predicates representing a coding rule violation together with the Prolog facts
representing the project structural information. A positive answer to a query
will flag a violation of the corresponding rule, and the culprits will be returned
in the form of bindings for the predicate arguments. On the other hand, failure
to return an answer means that the project conforms to that particular rule.

4 Rule Formalisation

In what follows we will look at how actual HICPP rules can be formalised using
logic programming.

Coding the rules requires a set of language-specific predicates representing
structural information about, e.g., the inheritance graph of the checked program,
its call graph, etc. We use an order sorted logic [7] to define these predicates with
the purpose of categorising different concepts of the language. Sorts in Prolog are
implemented as unary predicates, which is not suitable for constructive negation
and the meaning we want to give to quantifiers, as will be seen in Sect.

Some representative predicates targeting C++ — in particular those used in
the next rule examples —, and a significant fraction of the sorts relevant to them
are listed in Table [l Some predicates appear categorised as primitive: they
concern base facts that have to be provided by the compiler (i.e. GCC) in the
process of compiling a source program. Note that, in general, processing a single
compilation unit is not enough: extracting information pertaining a full program
or library is required for the analysis we are aiming at. More sophisticated pred-
icates can be constructed in terms of primitive predicates: some examples are
given in the table in the derived predicates section.

3 We are, however, experimenting with using other source code analysis tools for struc-
tural information extraction, including GCC 4.X itself.
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Table 1. A subset of sorts and predicates necessary to describe structural relations
in C++4 code. Sorts of predicate arguments are abbreviated: C' for class sort, M for
method, etc. [S] is a list of elements of sort S.

PREDICATE MEANING

Sorts

class(C) C'is a class.

method(M) M is a member function.

type(T) T is a C++ well-formed type.

template instance(TT) T1T is an instance of a template

identifier(I) I is a class or method identifier.

Primitive predicates

immediate base of (a: C,b: C) Class a appears in the list of explicit base
classes of class b.

public base of(a: C,b: C) Class b immediately inherits from class a with

public accessibility. There are analogous
predicates for other accessibility choices and
also for virtual inheritance.

declares member(a: C,n: N,m : M) Class a declares a member m with name n.

has method(c: C,m : M) Class ¢ has defined the m method.

constructor(c: M) Method c¢ is a constructor.

destructor(d : M) Method d is a destructor.

virtual(v : M) Method v is dynamically dispatched.

calls(a : M,b: M) Method @ has in its text an invocation of
method b.

siglm: M,i:I,a:[T),r:T) Method m has name 7, argument type a and

result type r.
Derived predicates
base of (a: C,b: C) Transitive closure of immediate base of /2.
inheritance path(a: C,b: C,p:[C]) Class b can be reached from class a through
the inheritance path p.

4.1 Some Examples of HICPP Rule Formalisation

Rule 3.3.15 of HICPP reads “ensure base classes common to more than one
derived class are virtual.” This can be interpreted as requiring that all classes
with more than one immediate descendant class are virtually derived, which
seems far too restrictive. In the justification that accompanies the rule, it is
made clear that the problem concerns repeated inheritance only (i.e., when a
replicated base class is not declared virtual in some of the paths). Whether all
paths need to use virtual inheritance, or only one of them, is difficult to infer
from the provided explanation and examples. This kind of ambiguity in natural
language definitions of coding rules is not uncommon, and is a strong argument
in favour of providing, as we do, a formalised rule definition amenable to be used
by an automatic checker.

The C++ definition of virtual inheritance makes clear that, in order to avoid
any ambiguities in classes that repeatedly inherit from a certain base class, all
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inheritance paths must include the repeated class as a virtual base. As we want
to identify violations of the rule, a reformulation is the following:

Rule 3.3.15 is violated if there exist classes A, B, C, and D such that:
class A is a base class of D through two different paths, and one of the
paths has class B as an immediate subclass of A, and the other has class
C' as an immediate subclass of A, where B and C are different classes.
Moreover A is not declared as a virtual base of C.

Fig. Bl shows, among others, the Prolog formalisation of a violation of rule
3.3.15. The success of a query to violate_hicpp_3_3_15/4 would exemplify an
example of violation of HICPP Rule 3.3.150

Note that the fact that all variables refer to classes is marked at the moment
— as Prolog is used — with a predicate class/1, whose clauses are provided as
part of the project description, and similarly for other sorts in other predicates.
A suitable definition of base of is also necessary:

base_of (A,A).
base_of (A,B) :- immediate_base_of (A,C), base_of (C,B).

In the case of 3.3.15, the four involved classes are not necessarily distinct,
but it is required that B and ¢ do not refer to the same class, and that both are
immediate descendants of A. The terms base_of (B,D) and base_of (C,D) point out
that class D must be a descendant of both B and ¢, through an arbitrary number
(maybe zero) of subclassing steps. Finally, for the rule to be violated we require
that class A is not virtually inherited by class C. The use of negation in rules is
further developed in Sect.

Fig.Bldepicts a set of classes and their inheritance relations which make the lit-
eral violate_hicpp_3_3_15(’::Animal’,’::Mammal’,’::WingedAnimal’,’::Bat’)
deducible, thus constituting a counterexample. If the inheritance from ’: : Animal’
to ’::WingedAnimal’ were also virtual, the goal would fail (no counterexample
could have been found). Note that the rule is more general than it may seem: for
example, it does not require that classes B and D are different. Thus, if (nonsensi-
cally) > : :Mammal’ and ’::Bat’ in Fig.[3 were the same, a property violation would
still be detected.

Another rule that can be easily implemented in this framework but requires
disjunction is rule HICPP 3.3.13 specified as “do not invoke virtual methods of
the declared class in a constructor or destructor.” This rule needs, additionally,
information about the call graph of the project.

Rule HICPP 3.3.2 states “write a ‘virtual’ destructor for base classes.” The
rationale behind this requirement is that if an object will ever be destroyed
through a pointer to its base class, the correct version of the destructor code
should be dynamically dispatched. This rule illustrates the necessity of existential
quantification; also, the construction “does not exist” appears repeatedly in rule
formalisation. Some hints about quantification are also provided in Sect.

1 We will use a similar naming convention hereinafter: violate_hicpp_X_Y_Z/N is the
rule which models the violation of the HICPP rule X.Y.Z.
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violate_hicpp_3_3_15(A,B,C,D) :-
class(A), class(B), class(C), class(D),
B \= C,
immediate_base_of (A,B), immediate_base_of(A,C),
base_of (B,D), base_of(C,D),
\+ virtual_base_of (A,C).

violate_hicpp_3_3_13(Caller,Called) :-
method(Caller), method(Called),
has_method (SomeClass,Caller),
(

) constructor (Caller)
) 3
has_method(SomeClass,Called),

virtual(Called),
calls(Caller,Called).

destructor (Caller)

violates_hicpp_3_3_2(BaseClass) :-
class(BaseClass),
exists_some_derived_class_of (BaseClass),
does_not_exist_virtual_destructor_in(BaseClass).

exists_some_derived_class_of (BaseClass) :-
immediate_base_of (BaseClass,_).

does_not_exist_virtual_destructor_in(Class) :-
\+ (
has_method (Class,Destructor),
destructor (Destructor),
virtual (Destructor)

).

violate_hicpp_16_2(Class) :-
template_instance (Class),
has_method(Class,Methodl),
has_method(Class,Method2),
Methodl \== Method2,
sig(Methodl ,Name ,ArgsT ,ResT),
sig(Method2 ,Name , ArgsT ,ResT).

violate_hicpp_3_3_1(Base,Derived) :-
class(Base), class(Derived),
(
private_base_of (Base,Derived)

).

protected_base_of (Base ,Derived)

violate_hicpp_3_3_11(BaseClass, Super,Class) :-
class(Class), class(Super),
base_of (Super ,Class), Class \= Super,
declares_member (Class,ClassMethod),
declares_member (Super, SuperMethod),
sig(ClassMethod ,Name , Args ,Ret),
sig(SuperMethod ,Name, Args ,Ret),
\+ virtual (SuperMethod),
\+ virtual (ClassMethod).

Fig. 2. Formalisation of some HICPP rules
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class(’::Animal’).
class(’::Mammal’).
class(’::WingedAnimal’).
class(’::Bat’).

. . immediate_base_of (’::Animal’,’::Mammal’).
|=1WlngedAnlma1| immediate_base_of (’::Animal’,’::WingedAnimal’)
immediate_base_of (’::Mammal’,’::Bat’).
immediate_base_of (’::WingedAnimal’,’::Bat’).
virtual_base_of (’::Animal’,’::Mammal’).

Fig. 3. Violation of rule HICPP 3.3.15 and automatically generated Prolog facts

template < typename T > class A {
public:
void foo( T );
void foo( int );

3
template class A< int >; // wotid foo(int) declared twice!

Fig. 4. Violation of rule HICPP 16.2

Rule HICPP 16.2 reads “do not define a class template with potentially con-
flicting methods.” The code snippet in Fig. ll taken from [2], illustrates how
not following the rule can hamper software maintenance and reusability: the
template instantiation generates two methods with identical signature.

A formalisation of the rule negation (and, in fact, a program capable of catch-
ing non-compliant code) can be easily written using unification and logic vari-
ables to represent template parameters (see Sect. 2] for more details), as shown
in predicate violate_hicpp_16_2/1 (Fig. |2|)

Syntactic rules are also trivially expressible in this framework provided that
enough information about the abstract syntax tree is reified into the knowledge
base about the program, even if more efficient ways of dealing with these rules
exist. Predicate violate_hicpp_3_3_1/2 (Fig. 2)) shows a Prolog representation
of rule HICPP 3.3.1, that reads “use public derivation only.”

HICPP rule 3.3.11, as captured by predicate violate_hicpp_3_3_11/3 (Fig. 2
forbids overloading or hiding non-virtual functions.

HICPP has a conservative spirit which we want to retain in our rules: any
potentially dangerous situation is altogether forbidden, regardless of whether it
can actually happen in a given environment (i.e., in a complete program). This is
very sensible: on one hand, from the point of view of program maintenance, initial
conditions may evolve in unforeseeable directions, and protecting the project is
very reasonable; on the other hand, when libraries are being developed, these
will be used in an a priori unknown environment.

The following paragraphs discuss the Prolog translation of rules.
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4.2 Types, Classes, and Generic Constructs (Templates)

Parametric polymorphism is realised in C++ by means of templates. We are
not dealing, at the moment, with a complete representation of templates, but
only with those whose parameters are classes and basic types. The names of the
parametrised classes are introduced in the knowledge base as function symbols
belonging to the class sort. Template parameters are modelled with logic vari-
ables, which makes it possible to deal with template instantiation directly by
means of variable instantiation. To illustrate our approach the following Prolog
code would be generated from code in Fig. [

A% Knowledge base about typing in C++

type (void_type).
type (boolean_type).

't':j‘yI')e (pointer_type (T)) :- type(T).

A% Project-specific data
template_instance (’::A’(T)) :- type(T).

This code states that, for a particular project, terms of the form > : :A* (¢) are of
sort template instance if t is any type. This paves the way for a richer language in
which types are first-order citizens and can be subject to arbitrary constraints (in
particular equality and disequality, but also notions of subsumption, if needed).
This makes up what is necessary to check for violations of rule HICPP 16.2
(recall Fig. []).

On the other hand, having such power leads to issues as the infinite set of an-
swers for the goal ?- template_instance(C). due to the definition of the scheme
for pointer types being used to construct all possible instances of template *A°.
Some of these cases can be worked around by using well-known evaluation tech-
niques such as tabled resolution (see, e.g., |8 for a basic reference), delay of
selected goals, and use of a suitable constraint system. A correct treatment
of disequality constraints needs dealing explicitly with negation of non-ground
goals.

4.3 Negation and Quantifiers

Negation appears in coding rules in various forms. On one hand, there is the issue,
already mentioned, that predicates specifying the violation of rules (i.e. their
negation) tend to be easier to translate into Prolog. But this is not necessarily the
case for every structural rule, so some method for automatically generating one
version from the other would be very useful. Also, we have seen that disequalities
and predicates representing the complement of basic relations occur frequently
in the rules.

The main problem with the built-in negation operators in Prolog — see the “\+”
in the last line of violate_hicpp_3_3_15 — is that correctness is only guaranteed
under certain run-time conditions, i.e. the negated literal must have no free
variables at call time. While experienced Prolog programmers usually develop
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a sizth sense that allows them to place negated literals only in safe placeSE a
general solution must be provided that allows a CRISP compiler to generate
correct Prolog code in all cases. Notice how this problem is shared with the
disequality operators — see the “\=" in the third line of violate_hicpp_3_3_15.

Extensions to Prolog allowing free variables in negated literals do exist under
the name constructive negation. Among these, intensional approaches apply a
source transformation in order to obtain, for a given predicate p in the original
program, a negative version neg p. Our choice has been to use our own imple-
mentation, named constructive intensional negation [10], as it deals properly
with the kind of knowledge bases that we are generating from the project code —
positive and potentially infinite, as explained in Sect. Negative constructive
answers are possible thanks to a disequality constraint library replacing stan-
dard Prolog disequality. This, of course, also solves the problem with disequality
operators.

The case of universal quantification is similar to negation. It appears both ex-
plicitly in the specification of the rules and also implicitly — generated during the
transformation implementing intensional negation of clauses with free variables.
Fortunately, our intensional negation library comes equipped with a universal
quantification mechanism which is semantically sound and complete for bases
satisfying certain conditions.

Finally, for this application, both negation and universal quantification must
be implemented in a sort aware way, i.e. negated predicates must represent the
complement of relations w.r.t. their sorts and the universal quantification of a
predicate must hold if, and only if, it holds for every element of its sort, etc. This
precludes a naive treatment of sorts as regular Prolog predicates. For example,
looking at typical rules like HICPP 3.3.15 or HICPP 16.2, whose violation is
formalised in Prolog in Fig. 2] we see that both clauses start with some sort
requirements (class(A), class(B) ...). A straightforward application of the in-
tensional negation transformation of such clauses would not produce the right
code. From a clause of the form

7(X) < sorts(X) A p(X)

we would obtain
neg r(X) < neg sorts(X)
neg 1(X) — neg p(X)

rather than the desired
neg r(X) « sorts(X) A neg p(X)

where p is the part of the clause not containing any sort requirements and neg p
and neg sorts have been obtained using an standard transformation. Notice how
sorts must remain positive in the negated version.

5 Static analysis techniques have been developed to actually prove these tricks correct,
see for instance [9].
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Table 2. A brief description of the open-source C++ projects that have been analysed
for rule violations. KLOC measured by sloccount.

PRrROJECT VERSION DESCRIPTION KLoc

Bacula 2.2.0 A network based backup program. 20

CLAM 1.1.0 C++ Library for Audio and Music. 46

Firebird 2.1.0.15999-Betal Relational database with concurrency and 439
stored procedures.

IT++ 3.10.12 Library for signal and speech processing. 39

OGRE 1.4.3 (Linux/OSX) Object-Oriented 3D Graphics Rendering En- 209
gine, scene-oriented.

Orca 2.5.0 Framework for developing component-based 89
robotic systems.
Qt 4.3.1 (X11 opensource) Application development framework and 595

GUI widgets library.

5 Experimental Results

We have developed a prototype that allows for implementing some syntactic and
structural coding rules and running them over a C++ source code tree, reporting
rule violations[d Some of the rules described in Sect. EZI] have been applied to
the C++ open-source software projects appearing in Table

A measure of the size of each project is provided in the table in the form of
physical lines of code (KLOC column). All analysed projects can be considered
mature but they diverge in their size and application area, covering as a whole a
wide range of C++ design techniques. Some of them are final applications, and
others are libraries of reusable components. Testing code and examples included
in many projects have been excluded from the analysis wherever possible.

Our checking tool has been constructed on top of the Prolog engine Ciao [6].
Until full integration into the GCC pipeline is done, we use, as mentioned before,
the open source tool Source-Navigator to extract the needed data about C++
programs. Source-Navigator covers almost the whole C/C++ language and it is
able to quickly analyse projects with thousands of source code files. Internally,
Source-Navigator stores project facts in Berkeley DB (BDB) tables. The conver-
sion of static information into the Prolog facts shown in Table [Tl was realised by
a simple Tcl program that traversed the Source-Navigator database using a Tcl
Application Programming Interface.

Validating the C++ software development project against its coding rules
is then realised by executing, in the Ciao Prolog System, each of the Prolog
predicates representing a coding rule violation together with the Prolog facts
representing the structural information about the project.

Table[3shows, for each software project, the number of violations automatically
detected for each implemented rule, together with the execution time consumed by

5 The source code of this and subsequent prototypes will be available at
https://babel.ls.fi.upm.es/trac/ggcc/.
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Table 3. Experimental results on a sample of HICPP coding rules and open-source
projects. SN TIME is the time spent by Source-Navigator on partially parsing the
source code and storing the needed facts into a database. LD TIME is the time taken
by loading the facts into the Prolog engine and pre-calculating the closure base of.
Cells for rule columns show no. of violations found (execution time). All times are user
time expressed in seconds.

ProJEcT SN TiIME LD TiIME RULE 3.3.1 RULE 3.3.2 RULE 3.3.11 RuULE 3.3.15

Bacula 1.53 024  0(0.00) 3 (0.03) 0 (0.00) 0 (0.00)
CLAM 1.82 162  1(0.00) 15 (0.47) 115 (0.12) 0 (0.24)
Firebird 6.48 2.61 16 (0.00) 60 (1.02) 115 (0.21) 0 (0.27)
IT++ 1.18 042  0(0.00) 6 (0.03) 12 (0.01) 0 (0.00)
OGRE 4.73 3.05  0(0.00) 15 (0.94) 79 (0.21) 0 (0.31)
Orca 2.51 117 1(0.00) 12 (0.38) 0 (0.09) 0 (0.16)
Qt 12.29 1042 15 (0.01) 75 (10.53) 1155 (1.32) 4(1.21)

all the necessary steps of the checking procedure. It can be seen that every project
violates some rule and that non-conformant code has been found for every rule.

The fact that rule HICPP 3.3.15 is violated by only one project (Qt) is a direct
consequence of the close to zero use of repeated (“diamond-like”) inheritance
in actual C4++ projects. The same infrastructure devoted to check coding rules
compliance has been used to detect multiple inheritance and repeated inheritance
instances. The conclusion is that multiple inheritance — an important object-
oriented design and implementation mechanism — is used very rarely, and the
only analysed projects that have taken advantage of repeated inheritance are
IT++ and Qt, and even there is applied very few times. Despite the efforts done
to include those features into the language [I1], its hazards and subtleties seem
to have convinced many developers that they have to be completely avoided.
Rule HICPP 3.3.15 (in combination with other HICPP rules) is oriented towards
permitting a reliable use of multiple and repeated inheritance. A wider adoption
of coding standards like HICPP could have the paradoxical effect of popularising
some denigrated — but useful — C++ features.

Another interesting aspect of these initial experiments is that they have con-
firmed that relying solely on manual checking is not a feasible approach to enforce
coding rules. Manually approve or reject those violations reported by the check-
ing tool has turn out to be a too tedious and error-prone task. Note that for
some rules (e.g. HICPP 3.3.11) the amount of violations is rather big. Moreover,
even for simple rules as HICPP 3.3.2 (easy to state and to formalise in Prolog),
rule requirements can be fulfilled in many ways, some of them not easy to grasp
from the source code. In this particular case a virtual destructor has to be looked
for in all the superclasses of a given class.

Execution times have been included in Table [3] to show that a non-negligible
amount of time is used to run non-trivial rule violation detectors over the biggest
projects, but they are still bearable — as far as rule enforcing machinery is not
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expected to run in every compilation or, alternatively, that incremental rule
checking is implemented. SN TIME and LD TIME are executed once per project.
The experiments have been run in a 32 bits Intel Dual Xeon 2.0 GHz and code
is completely sequential in all measured steps. In a similar way as base of, other
intermediate relations could be pre-computed on initialisation for improving per-
formance, or even more general tabling techniques might be used.

6 Related Work

To our knowledge, our proposal is the first attempt at using declarative tech-
nology for formally specifying and automatically checking coding rules. A re-
lated area where some academic proposals exist that apply first-order logic and
logic programming is formalisation and automatic verification of design pat-
terns [T2/T3JT4]. In [I4], facts about a Smalltalk program are reified into a logic
programming framework. In [I3] a very similar setting is developed targeting
the Java language. Both formalisms can deal with the structural relations nec-
essary to define the static aspects of design patterns. But none of them use true
sorts for quantification nor can cope with infinite domains or recursively defined
objects in the target language. This fact makes both approaches unable to repre-
sent C++ template parameters as logic variables and reason about hypothetical
instantiations of templates as we do in rule HICPP 16.2.

A different area where some interesting ideas can be borrowed from is auto-
matic bug finding techniques. The “bug pattern” term in [15] is very close to
our concept of what a rule violation is. It uses structural information, but no
mechanism is provided for the user to define its own bug patterns. On the other
hand, [I6/17] define a domain-specific language to create custom checks for C
code, and [I8] uses a declarative language for checks on Java. All three are based
on automata and syntactic patterns, and are specially oriented to the kind of
program properties related with dynamic rules (see Sect[Z)). The language in [I7]
is the least expressive of the three but, interestingly, the checking facility has
been integrated into a GCC branch.

7 Conclusion

This paper presents a logic programming-based framework to specify industrial
coding rules and use them to check code for conformance. These coding rules
express what are perceived as good programming practises in imperative/object-
oriented programming languages. Our framework is in principle language-agnos-
tic, and the particular characteristics of a given language (kinds of inheritance,
etc.) can be modelled seamlessly and with little effort.

The properties we tackle range from syntactic to semantic ones, although
in this paper we have focused on the so-called “structural properties”, which
address programming projects as a whole and have as basic components entities
such as classes, methods, functions, and their relations.



Automatic Coding Rule Conformance Checking Using Logic Programming 33

In contrast with our approach, current commercial tools like those mentioned
in Sect. [[l do not provide the user with any simple — and at the same time pow-
erful enough — mechanism to define new coding rules. If extensibility is possible
at all, new checks must be programmed directly in C or C++ and access the in-
ternal representation of the analysed code managed by the tool. Moreover, these
tools cannot be considered semantically reliable due to the absence of a formal
specification of their intended behaviour.

The inference engine we are currently using to perform rule violation detec-
tion is plain Prolog, which can be queried to discover witnesses of evil patterns.
Speed is, so far, very satisfactory, and we have been able to run non-trivial rules
in projects with half a million LOC in around ten seconds using a standard PC.
We have specified a good number of coding rules, of which we have selected what
we think is a relevant and interesting subset. As expected, the main problem is
not in the coding itself, but in understanding clearly what is the exact meaning
of the rule. This is, of course, part of the raison d’étre of the coding rule for-
malism. Tests have shown rule violations in very well-known and well-regarded
projects.

This work is part of a bigger project which is just giving its first results and
whose final aim is to be delivered as part of the GCC suite. Defining a stable
subset of CRISP is a priority among the directions for future research. The use
of a highly enriched logic-based domain-specific language must bridge the gap
between the expressive but ambiguous natural language and the rigorous, but
somewhat more constraining language of formal logic. In order to keep CRISP
declarative while maintaining the efficiency of the Prolog code obtained by hand,
a translation scheme must be defined that carefully handles the critical aspects
in the Prolog implementation identified so far: negation and disequalities in the
presence of free variables, universal quantification, sort constraints, etc.

Mid-term tasks include connecting the framework with other parts of the
GGCC project (e.g. static analysis) in order to cover more complex rules and, of
course, in order to gain more practical experience both in terms of expressiveness
and performance when analysing very large projects. Regarding the latter, there
seems to be some room for improvement by discovering recurring patterns —
e.g. the fact that transitive closures appear very often in coding rules suggests
a potential for tabling, etc.

In the long term, ways of obtaining the needed information about programs
directly from the natural language description of the coding rules, can be con-
sidered, e.g. by reformulating them into the so called controlled natural lan-
guages [19] like ACE, CLCE, etc., subsets, for instance, of English, that can be
understood unambiguously and automatically. However, the source of ambiguity
is not (only) the language itself, but also the assumption of some implicit infor-
mation (e.g. pertaining to a certain domain or organisation) that may be not
be obvious for an external user. The formalisation process, when the target lan-
guage is declarative and simple enough like CRISP, enforces explicitly including
these assumptions and, hence, solve the ambiguities.
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Abstract. In this paper we discuss an approach to support declarative
reasoning over aspect-oriented (AQ) programs, adopting AspectJ as a
representative technology. The approach is based on the transformation
of source code into a set of facts and rules, stored into a Prolog database.
Declarative analysis allows us to extract complex information through its
rich and expressive syntax. Our approach has two contributions. First,
it aims to improve the comprehension of AspectJ programs. The type
of knowledge provided is categorized in three main groups: i) general
knowledge, ii) bad smells, and iii) quality metrics. The second contribu-
tion is the provision of dependency analysis of AspectJ programs. To that
end, we identify dependencies in aspect-oriented programs, and translate
them into Prolog rules. Expected beneficiaries of our approach include
system maintainers who can obtain comprehension and perform depen-
dency analysis through querying the Prolog database during the change
planning stage of system evolution.

Keywords: Program comprehension, static analysis, dependency anal-
ysis, declarative reasoning, aspect-oriented programming, AspectJ pro-
gramming language.

1 Introduction

Software maintenance is defined as “the modification of a software product after
delivery to correct faults, improve performance (or other attributes) or to adapt
the product to a modified environment” (ANSI/IEEE standard 1219-1998). The
objective of maintenance is to enhance and optimize an existing system while
preserving its integrity [7]. The initial step of software maintenance is program
comprehension, and it demands effort and time, initially to understand the soft-
ware system and then to identify possible problems to be fixed while providing a
remedy for them without affecting the overall behavior of the system. Statistics
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indicate that the amount of time required for software comprehension consti-
tutes a significant proportion of the maintenance process. This is particularly
important while comprehension is deployed as the first step during change plan-
ning. In this phase, modifications of specific parts of the system would normally
affect other parts of the target system due to dependency relationships between
entities. Experience shows that making software changes without understand-
ing their effects can lead to underestimated efforts, delays in release schedules,
degraded software design and unreliable software products. Estimating and an-
alyzing the potential consequences of carrying out a change provides effective
information for the maintainers. To this end, dependency analysis provides feed-
back about the possible impact of modification of the software system.

The rest of the paper is organized as follows: In Section 2] we provide the
necessary theoretical background to aspect-oriented programing and the AspectJ
language which we use as a notable representative technology. In Section [B] we
discuss the problem and motivation behind this research. In Section [ we present
our proposal. We discuss our methodology in Sections [l [f] and [ We illustrate
how our approach can be deployed for a typical exploration task with a case study
in Section Bl We discuss related work in Section [@ and we provide an evaluation
of our approach in Section [I0l We conclude our discussion in Section [Tl

2 Theoretical Background: Aspect-Oriented
Programming (AOP) and AspectJ

The principle of separation of concerns [I7] refers to the realization of system con-
cepts into separate software units and it is a fundamental principle of software de-
velopment. The associated benefits include better analysis and understanding of
systems, improved readability of code, increased level of reusability, easy adapt-
ability and good maintainability. Despite the success of object-orientation in
the effort to achieve separation of concerns, certain properties in object-oriented
systems cannot be directly mapped in a one-to-one fashion from the problem
domain to the solution space, and thus cannot be localized in single modular
units. Their implementation ends up cutting across the inheritance hierarchy of
the system. Crosscutting concerns (or “aspects”) include persistence, authentica-
tion, synchronization and contract checking. Aspect-oriented programming [13]
explicitly addresses those concerns by introducing the notion of aspect, which
is a modular unit of decomposition. Currently there exist many approaches and
technologies to support AOP. One such notable technology is AspectJ [12], a
general-purpose aspect-oriented language, which has influenced the design di-
mensions of several other general-purpose aspect-oriented languages, and has
provided the community with a common vocabulary based on its own linguistic
constructs. In the AspectJ model, an aspect definition is a new unit of modularity
providing behavior to be inserted over functional components. This behavior is
defined in method-like blocks called advice. However, unlike a method, an advice
block is never explicitly called. Instead, it is only implicitly invoked by an associ-
ated construct called a pointcut expression. A pointcut expression is a predicate
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over well-defined points in the execution of the program which are referred to
as join points. When the program execution reaches a join point captured by a
pointcut expression, the associated advice block is executed. Even though the
specification and level of granularity of the join point model differ from one
language to another, common join points in current language specifications in-
clude calls to - and execution of methods and constructors. Most aspect-oriented
languages provide a level of granularity which specifies exactly when an advice
block should be executed, such as executing before, after, or instead of the code
defined at the associated join point. Furthermore, several advice blocks may ap-
ply to the same join point. In this case the order of execution is specified by
rules of advice precedence specified by the underlying language [14].

3 Problem and Motivation

With an increasing number of tools and support of a community of develop-
ers and researchers, the AspectJ programming language is perhaps the most
notable aspect-oriented technology. Aspect-oriented programing improves the
modularity of systems by allowing programmers to reason about individual
concerns in relative isolation. However, the improvement of modularity comes
with the cost of overall program comprehension. To achieve comprehension of
the entire aspect-oriented program, one must take into consideration not just
inter-component dependencies but also all aspect-to-component dependencies.
However, the implicit interdependency between aspects and classes demands
more careful investigation. The obliviousness property in general-purpose aspect-
oriented languages [I0] such as AspectJ implies that for a given piece of compo-
nent functionality £, we need to iterate over all aspect definitions to see which
pointcut predicates refer to £ and which advice may be combined with f£. Manual
analysis can be tedious and error prone, particularly for medium- to large-scale
systems. To this end, some tool support is currently available. The Eclipse As-
pectJ plug-in provides some level of visualization (see related work). However,
there is certain type of knowledge over an AspectJ program which is neither
straightforward to obtain nor can be provided through this plug-in. For example
the following information can only be manually extracted:

1. “Fragile aspects” [21]: those which contain pointcuts written in a way which
makes them highly vulnerable to any changes in the component code.

2. Aspects that have precedence over a given aspect.

3. Aspects that are advising protected methods only.

Dependency analysis requires program comprehension and it is based on the
definition of dependencies that exist among software entities. In the literature
many techniques are introduced for dependency analysis, while most of them
are adopted for procedural or object-oriented systems. The majority of these
techniques are deployed over a system dependency graph (SDG) and slicing
methods. However, graph-based analysis lacks scalability which makes the inves-
tigation difficult even for a medium-scale system. Moreover, it is very difficult
to manually traverse an SDG even for a small-scale system.
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The motivation behind this research is to provide a fine-grained model for
the representation of program elements and their inter-dependencies in aspect-
oriented programs through the deployment of declarative reasoning in order to
obtain comprehension and to perform dependency analysis.

4 Proposal: Declarative Reasoning of Aspect-Oriented
Programs

We propose the adoption of declarative reasoning to achieve comprehension and
dependency analysis of AspectJ systems. To achieve this goal, we need to per-
form a transformation from source code to a declarative representation. To gain
comprehension, we plan to adopt strategies from the literature (see Section [d]).
These strategies will be translated as rules in a Prolog database. In order to per-
form dependency analysis, we plan to identify dependencies in an aspect-oriented
program and to codify them as Prolog rules. Some of these dependencies will
be adopted from the literature [26], while some others will be introduced (see
Section [7)). Comprehension can then be obtained by executing queries on the
Prolog database (see Figure [II).

The expected contribution of this proposal is to provide a proof of concept
for an automated environment under which one can obtain knowledge over an
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from the literature. Some are
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AspectJ-like program where this knowledge would otherwise have been difficult
or impossible to obtain through existing techniques. Potential beneficiaries of
this approach include system maintainers who can perform dependency analysis
by querying the database on what elements of the system would be affected
should a specific change occur.

The Prolog language has its foundation in logic which allows programmers to
define solutions to problems in a logical manner. Its built-in pattern-matching
mechanism (unification) makes it possible to bound variables to complex struc-
tures which can themselves contain other variables. Moreover, unification pro-
vides a mechanism to find multiple solutions for a given problem. In addition
to above, Prolog can be deployed as a query language for a database of simple
facts for matching complicated patterns. We feel that Prolog is more suitable
than other query languages (e.g the Standard Query Language - SQL) for our
approach since our database would contain simple facts, but a lot of complex
search rules. For example, the derivation rules of Prolog enable us to define re-
lations between facts. However, with SQL we would need to store facts for each
relation (views in relational database) and we cannot build view recursively [15].
Deploying SQL would be more beneficial with a great amount of very complex
data and with simple search rules. Prolog makes it relatively straightforward to
specify, execute and refine complex queries over facts.

5 Model Transformation

In order to transform an AspectJ program into a set of Prolog facts, we have
defined a set of transformation rules given in Tables[Iland 2l The transformation
process from source code to facts is broken into two steps. First, the abstract
syntax tree (AST) corresponding to each compilation unit of the program (.java
and .aj files) is retrieved and traversed. Second, the AspectJ structure model
(ASM) is retrieved and traversed to provide additional information regarding
the relationship among pointcuts, methods and advice blocks. The extracted
information from the steps above is then translated to facts according to the
transformation rules. These facts are then added to the fact-base and used during
the inference process.

6 Model Comprehension

We have added a set of rules to the database in order to capture relationships
between entities in the system. These rules are context-free, i.e. they are inde-
pendent from the particular applications in which they are being deployed. The
rules are categorized into three types, based on the motivation by which they
were created:

General Rules. We have built certain general rules in order to extract knowl-
edge about the static structure of the program, like inheritance relationships,
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Table 1. Transformation rules - Part I

Transformation rules

<visibility>:= <public> | <private> | <protected> |

<package>

[class] (<className>, <visibility>)
[finalClass] (<className>)
[abstractClass] (<className>)

[interface] (<interfaceName>, <visibility>)

[extends] (<subClassName> (| <subInterfaceName>
<SubAspectName>) ,<superClassName>
(| <superInterfaceName> | <SuperAspectName>))

[implements] (<className>, <interfaceName>)

[aspect] (<aspectName>, <visibility>)
[privilegedAspect] (<aspectName>)

[new] (<classNamel>, <methodNamel>, <ClassName2>)

<attributeType>:= 0 | 1 | 2 | 3

[attribute] (<className> |<aspectName> |

<interfaceName>, <attName>, <Type>, <visibility>,

<attributeType>)

<methodType>:= 0 | 1 | 2 | 3

[method] (<className> | <aspectName>
<interfaceName>, <methodName>, <visibility>,
<Type>, <ListOfParameters>, <methodType> )

[sendMessage] (<classNamel>, <methodNamel>,

<ListOfParametersl1>, <className2>, <methodName2>,

<ListOfParameters2>)

[used] (<aspectName>, <adviceId>, <ListOfParametersi>,

<className>, <methodName>, <ListOfParameters>)

[accessFeature] (<classNamel>, <methodNamel>,
<className2>, <InstanceVariableName2>)

[constructor] (<className>, <visibility>,
<ListOfParam> )

Definition

visibility of a feature is <public> or
<private> or <protected>

class_name is a class with <visibility>
className is a final class
className is an abstract class

interfaceName is an interface with
<visibility>

Class subClassName (or subInterfaceName or
SubAspectName) extends superClassName (or
superInterfaceName or SuperAspectName)

Class class_name implements interface
interface_name

aspectName is an aspect with <visibility>
aspectName is a privileged aspect

An instance of <ClassName2> is instantiated
in method <methodNamel> in <classNamel>

<attributeType> can be final (1), or static
(2), or final-static (3), and if it is not any of
the previous types it is marked 0

<attName> of type <Type> is an at-
tribute declared in class className or
aspect aspectName or interfaceName with
<visibility>

<methodType> can be abstract( 1), or static
(3), or final (2) and if it is not any of the
previous types it is marked 0

<methodName> , with <ListOfParameters> pa-
rameters and access modifier public or
private or protected and return type <Type>
is declared in <className> or <aspectName>
or <interfaceName>

A message methodName2 is sent to
<className2> from methodNamel in
<classNamel>

<methodName> in class <className> is invoked
by <adviceId> in <aspectName>

<classNamel> accesses
<InstanceVariableName2> of <className2>
from <methodName1>

<className> has a constructor with
<ListOfParam> parameters

dependencies between aspects and classes, etc. These constitute the core rules
defined in our system, and the two subsequent categories of rules are built based
on this group. One such example is Declared Method in Inheritance Hierarchy,

(Figure [2)).

We also have defined rules to obtain the following: Aspect monitoring features
of a class (methods, attributes) with specific modifiers, Aspects with precedence
over a specific aspect, Methods advised by a pointcut, Messages to which a class

responds, etc.(see Section [1]).
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Table 2. Transformation rules - Part 11

Transformation rules Definition

[declareParent] (<aspectName>,<Typel>, <Type2>is declared to be the supertype of

<Type2> ) <Typel> in <aspectName>

[introducedMethod] (<aspectName>,<TypeName>, <aspectName> declares a method

<methodName>,<visibility>, <ReturnType>, <methodName> with <visibility>,

<ListOfParameters>,<methodType>) <ReturnType>,and <ListOfParameters>
for class <TypeName>

[introducedAtt] (<aspectName>,<TypeName>, <aspectName> declares an attribute

<AttName>,<Type>,<visibility>, <AttName> with, <Type> for a type

<attributeType>) <TypeName>

[pointcutdesig] (<pointcutDesignatorId>,<aspectName>, <joinpoint> with a unique id

<pointcutName>,<joinpoint>,<ListO0fParam>) <pointcutDesignatorId> defined in
aspectName

<pointcutType>:= 0 |1 |2 <pointcutType> can be abstract (1), static

(2), and if it is not any of the previous types
it is marked O

[pointcut] (<aspectName>,<pointcutName>,<List0fParam>, <pointcutName> defined in <aspectName>
<visibility>,<pointcutType>)

<joinpoint>:= call| execution| target| args| this <joinpoint> can be call, execution, target,
args, or this

<adviceType>:= before, after, around <adviceType> is before , after or around
[triggerAdvice] (<aspectName>, <adviceType>, Advice <adviceType> belongs to
<adviceId>,<ListOfParam>, <returnType> ) <aspectName> aspect

[advicePointcutMap] (<aspectName>, <adviceType>, Advice <adviceType> defined in
<adviceId>, <pointcutName> ) <aspectName> aspect is related to the

pointcut <pointcutName>

[precedence] (<aspectName>, <listOfAspect>) <precedence> rule is defined in aspect
<aspectName>, and <listOfAspect> contains
list of aspects according to their precedence

Rules to Identify Bad Smells. Rules to identify potential bad smells (identi-
fying anomalies where refactoring may be required) are influenced by
aspect-oriented refactoring strategies such as those discussed in [16] where the
authors describe typical situations in aspect-oriented programs which can be
problematic along with recommended refactoring strategies. In this work we are
only interested in the identification of these conditions as they can provide in-
dications to maintainers where refactoring could perhaps be valuable. One such
aspect-oriented refactoring strategy is Inline Class within Aspect:

Problem: A small standalone class is used only by code within an aspect. This
implies that we need to identify a class that is not subclassified, and it is not
used as an attribute for other classes, and it does not receive messages from other
classes, but it is referenced in an advice body of only one aspect (Figure ().

Along the same lines and following the strategies in [16], we have defined rules
for the following: Replace Implements with Declare Parents, Introduce Aspect
Protection, Replace Inter-type Method with Aspect Method, Extract Superaspect,
Pull Up Advice, Pull Up Declare Parents, Pull Up Inter-type Declaration, Pull
Up Pointcut and Push Down Pointcut.
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%% Obtain all methods introduced by an aspect for a supertype of a given type

findDeclaredMethod(AspectName, TypeName,SuperTypeName, MethodName): —
is aspect(AspectName), superType(SuperTypeName, TypeName),
introducedMethod(AspectName,SuperTypeName,MethodName, , , , ).

Fig. 2. Listing for rule findDeclaredMethod

%% Find candidate classes to be moved to an aspect

is CandidateForInline(Type):—
is class(Type), (get descendants(Type,L),size(L,0)),
not(attribute( ,Type, , , )), not(sendMessage( , , ,Type, , )),
(findall(Aspect,(is aspect(Aspect),used(Aspect, , ,Type, , )),List),
(size(List,1))).

Fig. 3. Listing for rule is CandidateForInline

Rules to Deploy Measurements. We have defined measurement rules in or-
der to extract information on the quality and the complexity of the program.
The complexity of a system depends on a number of measurable attributes such
as inheritance, coupling, cohesion, polymorphism, and application size. Some
of these attributes like coupling and cohesion are also applicable in an aspect-
oriented context. In [26] the authors define coupling as the degree of interde-
pendency among aspects and/or classes. One such metric based on coupling is
Attribute-Class Dependency: ”There is an attribute-class dependence between
aspect a and class ¢, if ¢ is a type of an attribute of a. The number of attribute
class dependences from aspect a to the class ¢ can formally be represented as
AtC(a,c) = | {z]x € A%(a) AT (z) = c}|.” This factor can be calculated through
the rule in Figure @

attributeClassDependence(AspectName, ClassName): —
is aspect(AspectName),
is class(ClassName), attribute(AspectName, ,ClassName, , ).
attributeClassDependenceCount(AspectName,ClassName,Count): —
count(attributeClassDependence(AspectName,ClassName),Count).

Fig. 4. Listing for rule attributeClassDependence

Along the same lines, and following the metrics in [26], we have defined rules
to support Advice-Class Dependency, Intertype-Class Dependency, and Aspect-
Inheritance Dependency measures.
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7 Defining Dependency Relationships between Program
Elements

We have classified dependencies in aspect code into three groups: 1) Dependen-
cies between aspects (AO specific dependencies), 2) Dependencies between base
classes (OO specific dependencies), and 3) Dependencies between aspects and
classes (OO-AO dependencies).

Types of AO Specific Dependencies

Inheritance Dependency. This defines the dependency between a superaspect
and its subaspects. In AspectJ, an aspect cannot be extended unless it is defined
to be abstract. An abstract aspect needs to have abstract pointcuts which will
then be implemented by the concrete subaspects. Normally the advice blocks
related to the abstract pointcuts are defined in the superaspect. Detecting the
impact of superaspect deletion would not be particularly interesting because
this is immediately caught by compiler. However, it is possible that one would
delete the content of the superaspect. In the example in Figure [6 there is a
direct dependency between before advice of the Superaspect and the abstract
pointcut p defined in the Superaspect (and also to the concrete pointcut p
defined in Subaspect) as the advice knows which pointcut it is related (bound)
to. Therefore, deleting the abstract pointcut would lead to a compiler error.
On the other hand, a pointcut does not know about the advice blocks which
depend on it. This implies that deleting the advice blocks (related to the abstract
pointcut) in the superaspect would result in the program loosing the expected
functionality (which was supposed to be supported by before, after, or around
of the join point match). Therefore the intended behavior of the program will be
changed if this dependency is not realized before the deletion of advice blocks.
This dependency can be detected through the rule in Figure

%% Obtain Adviceld in SuperAspect corresponding to given PointcutName in SubAspect
advicePointcutInheritenceDep(SuperAspect,SubAspect, Adviceld, PointcutName): —
is aspect(SuperAspect), is aspect(SubAspect),
pointcut(SuperAspect,PointcutName, , ,1),
pointcut(SubAspect, PointcutName, , ,0),
triggerAdvice(SuperAspect,Adviceld,adviceType, , ),
advicePointcutMap(SuperAspect, AdviceType,Adviceld,PointcutName).

Fig. 5. Listing for rule advicePointcutInheritenceDep

Precedence Dependency. Multiple advice blocks may apply to the same point-
cut, and the resolution order of the advice is based on rules on advice prece-
dence [22] under two cases:

1. Precedence rules among advice blocks from different aspects.
2. Precedence rules among advice blocks within the same aspect.
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Superaspect Subaspect

-1
+abstract pointcut: p() | N

int t:
+before(): p() rpeoimren e

Fig. 6. Inheritance Dependency

The precedence rules create an indirect dependency between advice blocks re-
lated to the same pointcut as the execution of advice blocks depends to the
precedence rules defined for the aspect(s) to which this advice blocks belong to.
The example in Figure [ corresponds to the first case.

The three advice blocks defined in aspects AJ1 and AJ2 are applied to the
same join point call (public void C.m(..). According to the precedence rules
the before advice defined in aspect AJ1 has precedence over the two advice
blocks defined in aspect AJ2, and the before advice of AJ2 has precedence over
its after advice. Figure [l shows the order of the execution of method C.m(int)
and the advice blocks. Neither of the advice blocks are aware of the precedence
defined in aspect AJ2. This implies that there would be no indication about this
dependency if one wants to change the before advice to after or around advice.
Another type of change can be adding a new advice block for the same join point
in aspect AJ1 or deleting either of the advice blocks.

public aspect AJ1 {
pointcut AJ1 P1(): call(public void C.m(..));
before(): AJ1 P1() { // Display “Before from AJ1”}}

public aspect AJ2 {
declare precedence: AJ1, AJ2;
pointcut AJ2 P1(): call(public void C.m(..));
before(): AJ2 P1() { // Display “Before from AJ2”

}
after(): AJ2 P1() { // Display “After from AJ2”
i3

public class C {
public void m(int i){

i3

Output:
Before from AJ1
Before from AJ2

After from AJ2

Fig. 7. Listing for Precedence Dependency
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For certain applications, the correct order of advice and method execution is
vital to preserve the semantics of the system. One such example is a concur-
rent system where a precondition to a service would dictate that authentication
would have to be evaluated before synchronization which in turn would have to
be evaluated before scheduling. Precedence rules guarantee the correct order, but
any changes to the precedence or to the advice should be performed with atten-
tion to the dependency that the declare precedence creates. On the Eclipse
IDE [1] it is possible to obtain the order of advice execution over a method, but it
is tedious to detect this dependency. We can detect the precedence dependency
through the following strategy:

Precedence dependency between advice blocks of the same aspect. For
each pointcut defined in an aspect we need to identify a list of its related advice
blocks. If the list contains more than one advice, then according to the precedence
rules there would be an order of execution for these advice blocks which implies
a dependency (Figure [§]).

%% Obtain ListofAdvice bound to PointcutName in AspectName
advicePrecedenceDepPerAspect(AspectName, PointcutName, ListofAdvice)—:
findall(Adviceld,advicePointcutMap(AspectName, ,Adviceld,PointcutName),
ListofAdvice),
size(ListofAdvice,N), N>0.

Fig. 8. Listing for rule advicePrecedenceDepPerAspect

We also have defined rules to identify precedence dependencies among advice
blocks from different aspects. For the OO-AQO dependencies, we have adopted the
dependencies defined in the literature. Due to space limitation, only a list of such
dependencies are provided: Pointcut-Class Dependency, Pointcut-Method Depen-
dency, Advice-Class Dependency, Intertype-Class Dependency, and Method-Class
Dependency.

8 Case Study

As a proof of concept, we deployed our method over a medium-scale service-
oriented system which we developed. The system allows possibly multiple con-
sumers and retailers to have access to a communications hub which controls and
coordinates their interactions in order to implement reverse auctions. In this pro-
tocol one consumer may place a request to purchase a product. After a collection
of sellers is iterated over to find the best price, a message is sent back to the client
informing them about the winner and asking for confirmation to place an order.
The core functionality is provided by the definitions of classes Infomediator and
ReverseAuction (defining the hub and protocol respectively - not shown). For
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public abstract aspect ObserverProtocol {

protected interface Subject {

public void addObserver(Observer o);

public void removeObserver(Observer o);

private List observers = new LinkedList();}
private synchronized void Subject.notifyObserver(PotentialOrder po){...}
public interface Observer {

public void notifyOfchange(Subject s, PotentialOrder po);}
protected abstract pointcut subjectChange(Subject s, PotentialOrder po);
after(Subject s, PotentialOrder po): subjectChange(s, po){...}
protected abstract pointcut findObservers(Infomediator info,

Subject s, String service, String rule);
after(Infomediator info, Subject s, String service,String rule):
findObservers(info, s, service, rule){..}}

privileged public aspect CoordinateObserver extends ObserverProtocol {
declare parents : Retailer implements Observer;
declare parents : Customer implements Subject;
private int Retailer.NumberSold = 0;
public void Retailer.notifyOfchange(Subject s, PotentialOrder po)
{NumberSold++;. ..}
protected pointcut subjectChange(Subject s, PotentialOrder po):
execution(* Customer.buy(PotentialOrder))
&& target(s) && args(po);
protected pointcut findObservers(Infomediator info, Subject customer,
String service, String rule):
execution (* Infomediator.initiateReverseAuction(Customer,
String,
String))
&& target(info) && args(customer, service, rule);}

Fig. 9. Listing for aspects ObserverProtocol and CoordinateObserver

each reverse auction request, a potential order is created and associated with the
consumer and the winner of the reverse auction. The system routes the auction
result back to the consumer and informs the winner using the callback pattern,
implemented in Java RMI. Supported semantics and other technical services
(such as the subject-observer protocol, contract checking, authentication, syn-
chronization, transaction logging, throughput and persistence) are provided by
a number of aspect definitions. One notable example is the aspectual behavior of
the aspect ObserverProtocol: This is implemented as an abstract aspect which
defines the Observer design pattern, where retailers are viewed as observers and
customers are viewed as subjects. The definition of CoordinateObserver ex-
tends ObserverProtocol and provides concrete pointcuts. A list of all retailers
that participate in the auction and provide the services that a customer wants is
created when a reverse auction is initiated. If the customer eventually purchases
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aspect(coordinateObserver,public).

extends(coordinateObserver,observerProtocol).

privileged Aspect(coordinateObserver).

declareParent(coordinateObserver,retailer,observer).

declareParent(coordinateObserver,customer,subject).

introduced Att(coordinateObserver,retailer,numberSold,int, private,0).

introducedMethod(coordinateObserver,retailer,notify Ofchange, public,
[subject,potentialOrder],0).

pointcut(coordinateObserver,subject Change, [subject, potentialOrder],protected,0).

pointcutdesig(1,coordinateObserver,subject Change,execution,

[public, ,customer,buy,[potentialOrder]]).
pointcutdesig(2,coordinateObserver,subjectChange,target, [subject]).
pointcutdesig(3,coordinateObserver,subject Change,args,[potentialOrder]).
pointcut(coordinateObserver,findObservers,

[infomediator,subject,string, string],protected,0).

Fig. 10. Listing for aspect coordinateObserver transformed to Prolog facts

findDeclaredMethod(Aspect,customer,SuperType,Method).

Result:

Aspect = ObserverProtocol, SuperType = Subject, Method = addObserver;
Aspect = ObserverProtocol, SuperType = Subject, Method = removeObserver;
Aspect = ObserverProtocol, SuperType = Subject, Method = notifyObserver;

Fig. 11. Listing for the result of rule findDeclaredMethod

the service from the winner retailer of the auction, the corresponding retailer
will be notified with the information about the number of items sold. A partial
view of the transformation of aspect coordinateObserver to Prolog facts is
provided in Figure[I(l Here we want to calculate Declared Method in Inheritance
Hierarchy for class Customer. Manually, this task would be tedious because one
needs to check the body of all aspect definitions in the system in order to obtain
this information. According to Section [l we need to run the following query (the
result of which is shown in Figure[IT]): findDeclaredMethod (Aspect , customer,
SuperType, Method) .

Automation and tool support: We have developed a tool (called AJsurf) as
an Eclipse plug-in that reads the source code and creates a database composed of
a collection of Prolog facts. The transformation process from source code to facts
is transparent to the end-users. The tool allows end-users to execute statements
in form of queries. Moreover, the tool supports the execution of predefined,
parameterized or direct queries (in the form of Prolog goals).
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9 Related Work

There is currently tool support to ease the comprehension process of both proce-
dural [24], and object-oriented programs. For the latter, tools can be categorized
according to the type of transformation and the artifacts they provide:

— Reverse engineering of source code to the design model (such as Poseidon-
UML [4], and Eclipse-Omondo [3]).

— Reverse engineering of source code to graphs (data dependency graph, con-
trol dependency graph, formal concept analysis lattice).

— Knowledge extraction (facts and rules) from the source code to produce
structural relations of elements which serve as a knowledge base over which
queries can be executed.

For aspect-oriented systems, tool support can be categorized in three groups
[18]: 1) Text-based tools: They provide different views such as editors, outline,
and package explorer. 2) Visualization-based tools: They create aspectual re-
lationship views (e.g calls, advice, advised-by) between aspects and classes.
3) Query-based tools: They can be considered as a subset of text-based or
visualization-based tools as they provide the result of a query either in text
or in a visualization view.

In [8] the authors present a reverse engineering tool called Ciao. Ciao is a
graphical navigator tool which allows users to formulate queries, generate a
graph, interact with graph nodes, and to perform various graph analysis tasks in
order to extract information from a software repository. The software repository
is a collection of source code artifacts with all related documents, configuration
management files, modification requests and manuals together with an associated
database that describes the components and relationship among them. CQL is
used as the query language associated with the repository. Ciao supports repos-
itories which have AERO style architecture (Attributes, Entity, Relationship,
and Operator), and it has been designed for C and C++ program database and
program difference database. Each node in the navigation graph corresponds to
a query that generates a specific view on the system. The edges of the navigation
graph represent historic dependencies between query views. However, the nodes
in the navigation graph only indicate the type of query executed and for each
query executed the corresponding graph is shown. To reconstruct the structural
relationships that connect different queries on a path, one must compare their
corresponding views.

In [20] the authors, model static and dynamic information of an object-
oriented system in term of Prolog facts. Declarative queries are defined to allow
filtering of the collected data and defining new queries. By running these queries,
maintainers can have a view of the system at a higher level of abstractions for a
better understanding.

SOUL is a logic meta-language based on Prolog which is implemented in
Visual Work Smalltalk [25]. It provides a declarative framework that allows
reasoning about the structure of Smalltalk programs based on the parse tree
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representation. This makes facts and rules to be independent from a particular
base language. Moreover, facts and rules are collected based on basic relation-
ships in the object-oriented system. High level relationships like design patterns
can be expressed and then implemented in code. The declarative framework of
SOUL consists of two layers of rules: basic layer and advanced layer. The basic
layer includes representational and structural rules. The representational rules
define object-oriented elements (classes, methods, and statements) in the logical
meta-language using Smalltalk terms. These rules are the only parts of SOUL
which are language base dependent, and the rest are language independent. Us-
ing Smalltalk terms facilitates the translation of object-oriented classes to logical
facts, and only the relationships between the classes are formulated in rules on
the meta-language. The structural rules are defined over the representational
rules and formulate some other relationship in Smalltalk systems. Using these
rules one can run basic queries on the system.

Lost [19] is an Eclipse plug-in query tool developed for code navigation and
browsing for AspectJ programs, deploying a variant of the Object Query Lan-
guage (OQL), developed by the authors. For its query language, end-users need
to write the queries in the query editor area and an instance error feedback fea-
ture of the tool allows users to correct the errors while writing queries. Users of
Lost need to know the query language as there is no predefined queries available.
This tool can be also used for navigation of Java programs. Like other Eclipse
plug-ins, this tool deploys Eclipse IDE features like syntax highlighting, and
auto-compilation.

In [23] the author implements a Java browser called JQuery as an Eclipse
plug-in. The tool creates a database from the source code and provides an in-
terface for the end-users to run queries. The query language used for this tool
is a logic programming language called TyRuBa. Using this tool, users can run
default (predefined) queries to extract information about their Java programs.
Moreover, the tool allows users to write their own queries in order to obtain more
information about the given Java code. One of the strengths of this tool is the
ability to explore complex combinations of relationships through the declarative
configuration interface. Users who only need the basic features do not need to
know TyRuBa. However, users would have to know TyRuBa should they want
to have more complex queries, as they would need to edit the existed queries or
write new ones.

JTransformer [2] is a Prolog-based query and transformation engine for stor-
ing, analyzing and transforming fact-bases of Java source code. JTransformer
creates an AST representation of a Java project, including the complete AST of
method bodies as a Prolog database. Using JTransformer, developers can run
powerful queries and transformations on the logic fact-base.

CodeQuest [I1] is a source code querying tool which uses safe Datalog as its
query language, mapping Datalog queries to a relational database system.

In [9] the authors present a prototype tool for analysis and performance op-
timization of Java programs called DeepWeaver-1. This tool is an extension
of the abc AspectJ compiler [5] which has a declarative style query language,
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(Prolog/Datalog-like query language) to analyze and transform code within and
across methods.

In [6] the authors, describe the representation of aspects in terms of a logic
programming language, albeit for a different purpose.

Eclipse IDE [1] provides different editors and views. Views are visual compo-
nents allowing navigation through a hierarchy of information. Editors are com-
ponents that allow editing or browsing a file. Views and editors provide different
types of representation of the resources for the developers. AspectJ Development
Tools (AJDT) provides support for aspect-oriented software development using
Aspect]J within the Eclipse IDE.

10 Evaluation

From the query language perspective, there have been two common approaches:
The first (implemented by Lost) adopts predefined predicates and combines them
using relational calculus. In this approach the predicates are stored in named
sets and the relational calculus query is translated to common relational alge-
bra operations. The advantage of this approach is the speed and efficiency of
the algorithm and the ease of transporting to a persistent storage mechanism.
The disadvantage is the limitation of its expressive power. The second approach
(implemented by JQuery) adopts a resolution inference mechanism to find the
values of variables as they are resolved during unification, while having more
expressiveness and power. By defining a query with some additional rules, the
end-user can gain the power of a full programming language. There are also dis-
advantages to this approach including 1) the possibility of running into infinite
loops in case of badly written queries and 2) taking a lot of time and memory
because of the nature of the reasoning algorithm. For the purpose of our investi-
gation there are a number of tasks, which require logical inference. Furthermore,
there are a number of recursive rules like the ones about inheritance hierarchies
and call graph traversal. The recursive queries on tree structures are not part of
standard have relational query languages like SQL and OQL, even though there
exist some vendor specific extensions to support these queries. We utilized the
logic based querying approach. However, for highly complex queries, one would
have to be familiar with the query language (Prolog). In addition, there are
strategies (for example, finding all the methods defined for a type through inter
type declaration) or measurements, that can be tedious to compute manually or
with other approaches, and our approach supports an environment to do that
automatically.

11 Conclusion and Recommendations

In this paper we discussed an approach to support declarative (static) analysis of
aspect-oriented programs, adopting AspectJ as a representative technology aim-
ing at improving comprehension. Our approach is based on the transformation
of source code into a set of facts and data, provided as a Prolog database over
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which queries can be executed. Declarative analysis allows us to extract complex
information through its rich and expressive syntax. The type of knowledge pro-
vided through these queries is categorized in three main groups, such as those
which address bad smells (identifying problematic situations where refactoring
may be needed), those which address measurements (providing the degree of
complexity of the system through metrics) and general (providing static infor-
mation about the system). We have automated our approach and integrated all
activities in a tool provided as an Eclipse plug-in. End-users can execute prede-
fined, parameterized or direct queries in the form of Prolog goals. In the future
we plan to extend our approach to support change impact analysis.
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Abstract. When BDDs are used for propagation in a constraint solver
with nogood recording, it is necessary to find a small subset of a given
set of variable assignments that is enough for a BDD to imply a new
variable assignment. We show that the task of finding such a minimum
subset is NP-complete by reduction from the hitting set problem. We
present a new algorithm for finding such a minimal subset, which runs in
time linear in the size of the BDD representation. In our experiments, the
new method is up to ten times faster than the previous method, thereby
reducing the solution time by even more than 80%. Due to linear time
complexity the new method is able to scale well.

1 Introduction

Many useful functions have compact Binary decision diagram (BDD) [I] repre-
sentations. Hence, the BDDs has attracted attention as a constraint representa-
tion [2I3JAU5I6I7I8]. The BDDs have been used in many applications, including:
verification, configuration and fault-tree analysis.

The nogood recording [I10)] is a technique in constraint solvers to find a subset
of the variable assignments made upto a dead-end in a search tree, such that the
found subset could independently lead to dead-ends. By recording such subsets
called nogoods and by preventing similar assignment patterns, the search effort
can be drastically reduced.

For a given set of variable assignments X, if the propagation of X in a con-
straint ¢ implies a variable assignment (v := a), denoted X A ¢ = (v := a), then
a reason R is a subset of X, such that R A ¢ = (v := a). Finding small rea-
sons is essential for nogood recording. The nogood recording plays a major part
in the successful SAT solvers. The adoption of the nogood recording in general
constraint solvers requires efficient methods for finding small reasons in every
important constraint representation, including BDDs.

This paper focuses on finding small reasons in BDDs. We show that the task
of finding a minimum-sized reason in BDDs is NP-complete by reduction from
the hitting set problem. We also present a new algorithm for finding minimal-
sized reasons, which runs in time linear in the size of the BDD representation.
We then empirically demonstrate the usefulness of the new algorithm over a
previous method. In our experiments, the new method scales better, and is upto
10 times faster than the previous one.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 53[67] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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2 Definitions

2.1 The Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) instance is a triple (V, D, C'), where V/
is a set of variables, D is a set of finite domains, one domain d; € D for each
variable v; € V', and C' is a set of constraints. Each constraint ¢; € C' is a pair
of the form (s;,7;), where s; C V and r; is a relation over the variables in s;.

An assignment X is a set like {vy, 1= @y, Vs, 1= Gy, ., Vs y) = Gz 5 }- The
variable assignment (v, := ag,) fixes the value of vy, to ay,, where ay, € dg,.
An assignment X is full if | X| = |V|, partial otherwise. A solution to a CSP is
a full assignment S, such that for any constraint (s;,r;) € C, the assignment S
restricted to s; belongs to the relation r;, i.e., S|, € r;. For a given assignment X,
a constraint ¢; implies a variable assignment (v := a), denoted X A¢; = (v := a),
if every tuple in the relation r; containing X|,, also contains (v := a).

2.2 The Binary Decision Diagrams

A reduced ordered binary decision diagram (BDD) [1] is a directed acyclic graph
with two terminal nodes, one marked with 1 (true) and the other with 0 (false).
The Figure[2 (a) and Figure Bl (a) show two example BDDs.

Each non-terminal node n is associated with a Boolean variable var(n). Each
node n has two outgoing edges, one dashed and another solid. The occurrence
of variables in any path has to obey a linear order. Also, isomorphic subgraphs
will be merged together, and a node n with both its outgoing edges reaching the
same node n. will be removed with all the incoming edges of n made to reach
n. directly. A BDD will be represented by its root node. The size of a BDD b,
|b], is the number of non-terminal nodes. For a given BDD, the term solid(n;)
evaluates to mg iff (n1,n2) is a solid edge in the BDD. Similarly, dashed(n;)
evaluates to ng iff (n1,n2) is a dashed edge.

The variable assignment corresponding to an edge (ny,n2) is (var(ny) := a),
where a = true iff ny = solid(ny). Consider a path p =< ni,ng,...,n; > in a
BDD with n; = 1, from a node n; to the 1-terminal. The assignment X, cor-
responding to the path p is X, = {(var(n;) :==a) | 1 <i < (I =1), (N1 =
solid(n;)) < (a = true)}. The X, is the set of the variable assignments corre-
sponding to each edge in the path. The path p is a solution path if ny = b and
n; = 1, i.,e, starts from the root node.

A BDD b represents a Boolean function f iff for any solution S to f, there
exists a solution path p in b, such that X, C S. We may denote the function
represented by a BDD b by b itself. If S is a solution of f, we may specify S € f.
The set of solutions S, corresponding to a solution path p is S, = {S | X, C
S, S € b}. We denote (v := a) € p to specify that there exists a S € S, such
that (v :=a) € S. Similarly, we denote X € p if there exists a S € S, such that
X C S. Note, (v := a) € p mentions that either there occurs an edge (n;, ni+1)
in p whose corresponding assignment is (v := a), or there is no node n; in the
path p such that var(n;) = v.
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Although a BDD representing a Boolean function could be exponential in
the number of variables in the function, for several practically useful functions
the equivalent BDDs are of small size. Hence, the BDDs have found widespread
usage in several applications.

2.3 Representing Constraints Using BDDs

To simplify the presentation, we assume that all the variables in a given CSP have
Boolean domain. Given a general CSP, we can encode it using Boolean variables.
For example, using the log-encoding method, a non-Boolean variable v € V with
domain d can be substituted by [log |d|] Boolean variables, matching each value
in d to a unique assignment of the introduced [log |d|] Boolean variables.

Each constraint ¢; € C' is hence a Boolean function defined over s;, with the
function mapping an assignment for s; to true iff the assignment belongs to r;.

For X = {vy, := Guy, Ve, = Quy, .-+, Vzy, = Az |y}, the Boolean function
obtained by the conjunction of the variable assignments in X is also denoted
by X, ie., X = \i<;<|x|(vz, = ag,), which will be clear from the context.

Given a CSP with several constraints, some of the constraints’ function might
be represented by compact BDDs. The BDDs of some of the constraints might
result in obtaining helpful inferences to speed-up the constraint solver. Hence,
the BDDs has attracted attention as a constraint representation [23I4I5I6ITS].

2.4 The Nogoods

A nogood [910] of a CSP is a partial assignment N, such that for any solution
S of the CSP, N ¢ S. Hence, a nogood N cannot be part of any solution to the
CSP. In a typical constraint solver, an initial empty assignment X = {} will be
extended by both the branching decisions and the variable assignments implied
by the decisions, and the partial assignment X will be reduced by the backtrack-
ing steps. The extensions and reductions will go on until either X becomes a
solution or all possible assignments are exhausted.

A backtracking step occurs when the assignment X cannot be extended to a
solution. The nogood recording, if implemented in a constraint solver, will be in-
voked just before each backtracking step. The nogood recording involves finding
and storing a subset N of the partial assignment X, such that N is a nogood.
Such nogoods can be used to prevent some bad branching choices in the future
and hence speed-up the solution process. This paper focuses on a building block
of nogood recording and can be understood independently. We refer the interested
reader to [QUIOMTIIT27] for details on the whole nogood recording process.

2.5 The Reasons for Variable Assignment

A building block of nogood recording is to find a small subset R of an assignment
X that is a reason for the implication of a variable. If X A ¢ = (v := a), then the
reason Risasubset of X, R C X, such that RAc = (v := a). Heuristically, smaller
sized reasons are preferred, since that would lead to smaller nogoods resulting in
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better pruning. We show that when a BDD represents a constraint, the task of
finding a minimum sized reason is NP-complete. We also show that a minimal
sized reason can be found in time linear in the size of the BDD.
Given a BDD b, an assignment X and (v := a) such that X A b = (v := a),
let Ry ={ R|RC X, RAb= (v:=a)}. The set Ry contains all the reasons.
Now, we formally define the problems for finding minimum and minimal rea-
sons in BDDs. We specify the decision version for the minimum problem.

MINIMUM BDD-REASON :

Input: A BDD b, an assignment X, and (v := a), such that X Ab = (v := a)
and a positive integer K.
Output: Yes, if there is a R, such that R € Ry, and |R| < K. No, otherwise.

MINIMAL BDD-REASON :

Input: A BDD b, an assignment X, and (v := a), such that X Ab= (v := a).
Output: R, such that R € Ry, and VR’ € Ryy. if R* C R then R = R’.

3 The MiNIMUM BDD-REASON Is Intractable

We prove that MINIMUM BDD-REASON is NP-complete by using reduction
from the HITTING SET problem.

HITTING SET [I3]:

Input: A collection @ of subsets of a finite set P, and a positive integer K < |P|.
Output: Yes, if there is a set P’ with |P’| < K such that P’ contains at least
one element from each subset in Q). No, otherwise.

Lemma 1. A relation r with q tuples, defined over k Boolean variables, can be
represented by a BDD of size at most qk nodes.

Proof. If the BDD b represents the relation r, then there will be exactly ¢ solu-
tions in b, one for each tuple in r. Since representing each solution by b requires
at most k nodes, there will be at most gk non-terminal nodes in b. a

Lemma 2. Given a BDD m of a function over the variables in {b1,ba, ... by},
using the order by < b < ... < by, if m = (b := false) then the size of the
BDD m/ representing m V (by, = true) is |m|.

Proof. Since the variable by is at the end of the variable order, given m we can
obtain m’ by just the following two steps.

1. Add a new node n’ with var(n') = by. The dashed edge of n’ will reach the
0-terminal and the solid edge will reach the 1-terminal. The n’ represents
the function (b = true). Now, for each dashed (resp. solid) edge of the form
(n,0) for any node n, where n # n’, replace the dashed (resp. solid) edge
(n,0) with a new dashed (resp. solid) edge (n,n’).
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2. There will be only one n” such that var(n') = by and n” # n’, representing
the function (by = false), otherwise m = (by := false) is not possible.
Remove n” and make the incoming edges of n” to reach the 1-terminal.

Exactly one node n’ is added and one node n” is removed. Hence, |m/| = |m|. O
Theorem 1. The MINIMUM BDD-REASON is NP-complete.

Proof. The problem is in NP, as we can quickly check the correctness of any R.
Now, we reduce the HITTING SET problem into MINIMUM BDD-REASON.
Let the set P = {p1,p2,....pp|}, @ = {q1,42,...,qg|} with ¢; € P and an
integer K define an instance of the HITTING SET problem.
Let r be a relation defined over the
|P| + 1 Boolean variables in the set

bi b2 . . . bp bp {b1,b2,...,byp|4+1}. The Figure [ shows
air a2 . . - ayp| false the structure of the relation r. There will
as1  a22 . . . agp| false

be |Q| rows in r. The row 4 of r will cor-
respond to the ¢; € Q. Let the Boolean
term a;; be false iff p; € g;.

aQn ag2 - . . ayg|p| false The row 7 of the relation r will contain
) . the tuple (a1, as2,...,a;p|,false). Let
Fig. 1. The relation r the BDD b, represents the function of r,

using the order by < b2 < ... < bjp|41-

Let the BDD b’ represents the function (bjpj41 = true). The V' is trivial with
just one non-terminal node. Let the BDD b represents b, V U/, i.e., b = b, V V.
Let X = {by := true, by := true, ..., bjp| = true}.

By the definition of r, in each solution S of b, the b p|;; takes false value.
Also, if S'is a solution of o', then b p| 1 takes true value in S. Due to the different
values for bjp|41, the solutions of b, and b are disjoint. So for any S € b, either
S b, orSeb, but not both.

For any ¢; € @, |¢;| > 1, therefore, for each row i of r there exists a p; € ¢;
such that a;; = false. So, for any S € b, S € b, implies that there exists an 1,
1 < ¢ < |P|, such that a;; = false, and hence b; takes false value in S. As, for
1 <4 < |PJ, b; takes true in X, X A b, is false. So, X Ab = X AV and since
b' = (b p|41 = true), X ANb = (bp|41 := true).

So, the assignment X, the BDD b, the variable assignment (bjp|4; := true)
and the integer K define an instance of the MINIMUM BDD-REASON problem.

So given a HITTING SET instance (P, @, K), we can obtain a corresponding
instance of MINIMUM BDD-REASON defined by (X, b, (bp|+1 := true), K).

We now have to show that given (P,Q, K), we can obtain (X,0b, (bpj+1 =
true), K') in polytime and also that the output to (X,b, (bjp|+1 := true), K) is
Yes iff the output for (P,Q, K) is Yes.

To show that we can obtain (X, b, (bp|4+1 := true), K) in polytime, we just
have to show that we can obtain b in polytime. By Lemma/[ll |b,| is bounded by
|Q|(|P] +1). Also, by Lemma 2} [b| which is equivalent to b, V (b p|41 = true) is
at most |b,|. Hence, we can obtain (X, b, (bp|11 := true), K) in polytime.
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Now, we just have to show that the instance (P, @, K) has the Yes output iff
the instance (X, b, (b p|4+1 := true), K) has the Yes output.

(=):Let P = {pt,, Dty - - - ,ptlp,‘},wherel <t; < |P|, be an answer for the Yes
output of (P, @, K). Then consider R to be {b;, := true, by, := true, ..., bt pr, =
true}. We show that R A b = (b|p|41 := true), which proves the (=) case.

Since P’ is a Yes answer, by definition, for each row i of r, there will be a
Jj, such that p; € P’ and (a;; = false). So for each row 7, there will be a j,
such that (a;; = false) and b; takes true value in R. Hence, the solution S € b,
corresponding to any row ¢ cannot be a solution of RAb,.. So, RAb, = false, which
implies RAb = RA (b, VV') = ((RAb)V (RAV)) = ((false) V (RAV)) = RAD.
Since, (RAV) = (bp|41 := true), RAb = (b p|41 := true). Hence the (=) case.

(«): Let R = {by, := true, by, = true,..., by, = true} be a solution for the
Yes answer of (X, b, (b p|41 = true), K). Let P' = {py,Dry, .-+ Pr p }- We have
to show that P’ has at least one element p; € g; for each ¢; € Q.

Since RAb = (bjpj41 = true), V' = (bp|41 := true) and b, = (bjp|41 :=
false), R A\ b, = false. So, there is no solution S such that S € (R Ab,).

For each row i of the relation r there exists a j such that (a;; = false) and
(bj = true) € R. Otherwise, i.e., if there does not exist such a j for a row ¢
then, the solution S corresponding to the row ¢ belongs to (R A b,.), which is a
contradiction to R A b, = false.

So, for each row 4, there exists a j such that (a;; = false) and (b; := true) € R,
hence, p; € ¢; and p; € P’, which proves the (<) case. O

4 A Linear-Time Algorithm for MINIMAL BDD-REASON

A dashed edge (n1,n2) in a BDD b is a conflicting edge with respect to an
assignment X if (var(ni) := true) € X. Similarly, a solid edge (n1,n2) in b is a
conflicting edge with respect to X if (var(ni) := false) € X.

Suppose X Ab = (v := a), then the removal of all the conflicting edges w.r.t X
in b will result in removing each solution path p with (v := —a) € p. Otherwise,
there will be a p such that X € p and (v := —a) € p, which is a contradiction to
XAb= (v:=a).

Example 1. Consider the BDD b in the Figure [ (a) and the assignment X =
{v := true,x := true, z := false}, then X Ab = (y := true). Hence, the removal
of the conflicting edges, as shown in the Figure 2 (b), removes every solution
path p with (y := false) € p.

Example 2. Consider the BDD b in the Figure Bl (a) and the assignment X =
{v := false,w := true,y := false}, then X Ab = (z := false). Hence, the removal
of the conflicting edges, as shown in the Figure Bl (b), removes every solution
path p with (z := true) € p.

Suppose X A b = (v := a), a conflicting edge (n1,n2) is a frontier edge if there
exists a solution path p using (n1,n2), such that (v := —a) € p, and the subpath
of p from nsy to the 1-terminal does not use any conflicting edge.
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Fig. 2. Ezample 1, X Ab = (y := true). (a) The BDD b, (b) The BDD b without the
conflicting edges w.r.t X, (c) The BDD b without the frontier edges.

Fig. 3. Ezample 2, X ANb = (z := false). (a) The BDD b, (b) The BDD b without the
conflicting edges w.r.t X, (c) The BDD b without the frontier edges, (d) The BDD b
without the conflicting edges w.r.t R = {(v := false), (w := true)}.

In any solution path p with (v := —a) € p, the frontier edge is the conflicting
edge nearest to the 1-terminal. Hence, removal of all the frontier edges will result
in removing every solution path with (v := —a). Otherwise, there will exist a
solution path p without using any frontier edge, such that (v := —a) € p, which
is a contradiction to X Ab = (v := a). The Figure 2 (¢) and Figure B (c)
show the BDDs of the two examples without just the frontier edges. In both the
cases, the removal of the frontier edges removes every solution path p with the
corresponding variable assignment.

The idea of our minimal reason algorithm is to first find the frontier edges.
Then, to find a subset of the frontier edges such that the inclusion of the vari-
able assignments conflicting the subset in R will ensure that RAb = (v := a) and
R is minimal.

In the Example 1, as in the Figure[2 (¢), all the frontier edges conflict with just
(x := true). Hence, the set R = {(z := true)} is such that RAb = (y := true).

In the Example 2, as in the Figure[3 (¢), each assignment in X has a frontier
edge. There is only one solution path with a frontier edge of (y := false). Also,
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in that path there is a conflicting edge of (w := true). Hence, the inclusion of
(w := true) in R will make the frontier edge of (y := false) redundant. So, if
(w := true) € R then (y := false) need not belong to R. This results in a minimal
reason R = {(v =: false), (w := true)}. The Figure[3 (d) shows the BDD b for the
Example 2 after removal of the conflicting edges w.r.t. R = {(v := false),(w :=
true)}. It can be observed that all the solution paths with (x := true) are removed
in the figure. Also, the set R is minimal, since for any R’ C R, there exists a
solution path p in the BDD b, with both R’ € p and (x := true) € p.

The idea of our algorithm is hence to find the frontier edges first. Then to look
at the frontier edges, in the order of their variables, and decide on the inclusion
of a matching variable assignment in R if it is necessary to remove a solution
path.

The Figure @ presents the MinimalReason procedure. The MinimalReason
uses the FindFrontier procedure in Figure Bl to mark the nodes with an outgoing
frontier edge. The assumptions made in presenting the procedures are:

1. The BDD b represents a function defined over the k Boolean variables in the
set {b1,ba,...,b}, using the variable order by < ba < ... < b. We assume
XAb= (v:=a) where v =10; for an i, 1 <i <k.

2. The wisited, reachl, and frontier are three Boolean arrays, indexed by the
nodes in the BDD b. The entries in the three arrays are initially false.

3. The reachedSet is an array of sets indexed by the variables in the BDD. The
entries in the reachedSet array are initially empty sets.

4. The set Vx denotes the variables in X, i.e., Vx := {b; | (b; :=a’) € X}.

The procedure FindFrontier visits all the nodes in the BDD b in a depth first
manner and if an edge (n1,n2) is a frontier edge, then sets the entry frontier[n,]
to true. The procedure uses the wisited array to make sure it visits a node only
once. At the end of the procedure, the entry reachl[n] is true iff there exists
a path from n to the 1-terminal without using a conflicting edge or an edge
corresponding to (v := a).

The lines 1-2 of the MinimalReason procedure appropriately initializes the
reachl and wvisited entries for the two terminal nodes and makes a call to Find-
Frontier. The lines 1-3 of the FindFrontier procedure ensure that a node is vis-
ited only once and the child nodes are processed first. In the case (var(n) = v) at
line-4, based on the value of ’a’ the procedure appropriately sets reach![n], ignor-
ing the edge corresponding to (v := a). Since we are just interested in removing
solution paths with (v := —a), we can ignore the edge corresponding to (v := a).
In the case (var(n) ¢ V) at line-9, the procedure sets the reachi[n] to true if any
of the child nodes of n has true entry in reachi. The lines 12-13 correspond to the
case where var(n) € Vy, in which an outgoing edge of the node n could be a fron-
tier edge. Based on the value var(n) takes in X and the reachl entries of the child
nodes, the procedure decides whether frontier[n] is true or not. Note, the value
frontier[n] becomes true if an outgoing edge of the node n is a frontier edge.

At the end of the first recursive call made to FindFrontier at the line-2 of
MinimalReason, all the nodes with an outgoing frontier edge are identified by
the entries in the frontier array. At the line-3 of the MinimalReason procedure,
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MinimalReason (X, b, (v := a))

1 : reachl]0] := false ; reachl1[1] := true ; visited[0] := true ; visited[1] := true
2 : FindFrontier(b)

3 : reachedSet[var(b)] := {b} ; R={}; T:={0,1} // T - terminal nodes
4:fori:=1to k //i.e., for each variable b;

5: foundFrontier := false

6: for each n € reachedSet[b;]

7: if (frontier[n]) foundFrontier := true

8: if (foundFrontier)

9: if ((b; := true) € X)

10: R.Add((b; := true))

11: for each n € reachedSet[b;]

12: if (solid(n) ¢ T') reachedSet[var(solid(n))].Add(solid(n))
13: else //i.e., ((b; := false) € X)

14: R.Add((b; := false))

15: for each n € reachedSet[b;]

16: if (dashed(n) ¢ T') reachedSet[var(dashed(n))].Add(dashed(n))
17: else // i.e., (foundFrontier = false)

18: for each n € reachedSet[b;]

19: if (solid(n) ¢ T') reachedSet[var(solid(n))].Add(solid(n))

20: if (dashed(n) ¢ T') reachedSet[var(dashed(n))].Add(dashed(n))
21: return R

Fig. 4. The MinimalReason Procedure

FindFrontier (n)

1 : wisited[n] := true

2 1 if (—wisited[solid(n)]) FindFrontier(solid(n))

3 ¢ if (—wisited[dashed(n)]) FindFrontier(dashed(n))
4 : if (var(n) = v)

5 if (a)

6: if (reachl[dashed(n)]) reachlln] := true
7 else // i.e., (a = false)

8: if (reachl[solid(n)]) reachl[n] := true

9 : else if (var(n) ¢ Vx)

10: if (reach1[dashed(n)] V reachl[solid(n)]) reachln] := true
11: else // i.e., var(n) € Vx

12: if((var(n) := true) € X)

13: if (reachl[dashed(n)]) frontier[n] := true
14: if (reachl[solid(n)]) reachl[n] := true
15: else

16: if (reachl[solid(n)]) frontier[n] := true
17: if (reachl[dashed(n)]) reachlln] := true

Fig. 5. The FindFrontier Procedure

the set reachedSet[var(b)] is assigned a set with just the root node. At the end
of MinimalReason, if a node n belongs to the set reachedSet[var[n]], then it
means the node n could be reached from the root node b without using any
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conflicting edge w.r.t R, where R is the output minimal reason. At the line-3 of
the procedure, the set R is initialized to be empty and T is initialized to a set
with both the terminal nodes. At the line-4, the procedure starts to loop over
each variable in the BDD, in the variable order. During each loop, if any node n
belongs to the reachedSet[var(n)] with (frontier[n] = true), then the procedure
adds the assignment of var(n) in X to R and ignores the child node of n which
can be reached by the frontier edge of n by not adding it to the reachedSet. In
the case there was no frontier node in reachedSet[b;], then the lines 18-20 adds
both the child nodes of each n € reachedSet[b;] to the reachedSet if they are
not terminal nodes. At the line-21, the procedure returns the obtained minimal
reason R, such that RAb = (v :=a).

Lemma 3. If (ng,nyy1) is a frontier edge, then the FindFrontier results in
frontier[ng] = true.

Proof. Let a solution path p for which (nf,ns41) is a frontier edge be p =<
N1, M2, ..., N, N1, .. .,N >, where ny = b and n; = 1. We know (v := —a) € p.

It can be observed that the FindFrontier procedure ensures that, for f < j </,
reach1n;] = true. Since n; = 1, this trivially holds for n;, as initialized at the
line-1 of the MinimalReason procedure. For f < j < [, the edge (n;,n;11)
is not a conflicting edge by frontier edge definition, also (nj,n;41) does not
correspond to the assignment (v := a) as (v := —a) € p. Hence, for f < j < I,
the FindFrontier procedure ensures that reachl[n;i1] = reachl[n;]. Therefore,
for f < j <I, reachln;] = true, which implies reachl[nyi1] = true.

Since reachl[nyy1] = true during the call FindFrontier(ny), the lines 12-17 of
the procedure will ensure that frontier[ns] = true. |

Theorem 2. If MinimalReason (X, b, (v := a)) returns R then RAb = (v := a).

Proof. We show that in any solution path p in the BDD b with (v := —a) € p,
there exists a conflicting edge w.r.t. R. Hence, for any solution S € b, if (v :=
-a) € S, then S ¢ (R Ab), which proves the theorem.

The proof is by contradiction. Suppose there exists a solution path p in the
BDD b with (v := —a) € p. Let p =< ni,n9,...,nf,Np41,...,n >, where
ni1 =b,n;y =1 and (ny,ns41) is the frontier edge. Lets assume the path does not
use any conflicting edge w.r.t R. Then, we show that ny € reachedSet[var(ny)]
and hence the assignment of var(ny) in X, which conflicts (ny,nsy1), belongs
to R, which is a contradiction.

Since by assumption the path p does not contain any conflicting edge w.r.t
R, for any edge (n;,n;+1) in p, if the assignment corresponding to the edge is
(var(n;) :== a’), then (var(n;) := —a’) ¢ R.

Then for 1 < i < f, n; € reachedSet[var(n;)]. This holds trivially for i =
1 as initialized at the line-3. For 1 < ¢ < f, since by assumption the edge
(ni,n; + 1) is not a conflicting edge w.r.t R, the procedure would have added
niy1 to reachedSet[var(n;y1)], irrespective of the value of the foundFrontier flag
during the loop at the line-4 for var(n;). Hence, ny € reachedSet[var(ny)|.
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During the loop corresponding to var(ny), at the line-4 of the MinimalReason
procedure, since ny € reachedSet[var(ny)| and by Lemma [3], frontier[ns] = true,
the foundFrontier flag will be true. Hence, the assignment to var(ny) in X will be
in R, with (ng,ns11) being a conflicting edge w.r.t. R, which is a contradiction.

O

Theorem 3. If MinimalReason (X,b, (v := a)) returns R then R is a minimal
reason.

Proof. Let (v' := a’) € R. The MinimalReason includes (v’ := a’) in R only if
there exists a node n with frontier[n] = true, var(n) =v" and n € reachedSet[v'].
Hence, by the frontier edge definition, an edge of the form (n,n’) is the only
conflicting edge w.r.t R in a solution path p with (v := —a) € p. Hence, the
removal of (v/ := @’) from R would imply RAb = (v := a) is not true. Therefore,
R is minimal. O

Theorem 4. The MinimalReason procedure takes time at most linear in |b].

Proof. The total amount of space used by all the used data-structures is at most
linear in b. We can ignore the number of variables k& when compared with |b|,
as |b| could be exponential in k.

After excluding time taken by the descendant calls, each call to the Find-
Frontier procedure takes constant time. Hence, the call FindFrontier(b) in total
takes time at most linear in |b|.

The running time of MinimalReason procedure, excluding the call to Find-
Frontier, is dominated by the loop at line-4. The loop iterates k times. Since a
node n in the BDD b is added to reachedSet[var(n)| at most once during all the
k iterations, the total time required for all the k loops is linear in b.

Hence, the MinimalReason procedure takes time at most linear in [b| to find
a minimal reason. O

5 Related Work

A method for finding minimal reasons in BDDs was presented in [7], which
we call as the PADLO6 method. The authors did not specify the worst case
running time of the PADL06 method. But, the PADL06 method uses existential
quantification operations on BDDs and hence quite costly when compared to
our new linear-time method. If the BDD b is defined over the variables in V},
the PADL06 method existentially quantifies the variables in (V,\Vx) from the
BDD b for finding a minimal reason. Note, the time and space complexity of each
existential quantification operation in the worst case could even be quadratic [1]
in |b|. Precisely, some of the advantages of our new method over the PADLO6 [7]
method are:

1. Worst case linear running time.
2. No costly BDD operations like existential quantifications.
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3. No creation of new BDD nodes, the BDDs remain static during our solution
process. Our new minimal reason method just uses the underlying directed
acyclic graph of the BDDs, and hence does not require a full BDD package,
while the PADLO06 method requires a full BDD package.

In [T4], the authors did not give details of their method for generating minimal
reasons in BDDs, even the complexity of their method was not mentioned.

6 Experiments

We have implemented our new minimal reason algorithm as part of a constraint
solver with nogood learning. Our solver uses the BuDD)El BDD package. Our
solver just uses the lexicographic variable order.

Given a CSP instance in the CLab [I5] input format, we use the CLab tool to
compile BDDs, one BDD for each constraint in the CSP. This will convert the
input CSP instance into a list of Boolean variables and a set of BDDs defined over
those variables. Our tool takes the set of BDDs as input and uses our constraint
solver to find a solution. Our tool is designed after the BDD-based hybrid SAT
solver in [I4], which requires a method for MINIMAL BDD-REASON .

We use the 34 CSPs modelling power supply restoration problem in our exper-
iments. The instances are available onlineﬂ7 in the CLab format. All the instances
are satisfiable.

We have also implemented the PADLO06 [7] method in our tool for comparison.
To study the scalability of the PADL06 method and our new method, for each
input CSP, we create three types of instances in BDD format with increasing
BDD sizes. The first type called Group-1 instance, as mentioned above, is ob-
tained by building one BDD for each constraint in the CSP. The second type
called Group-5 instance is obtained by first partitioning the constraints into
[|C]/5] disjoint groups of constraints in the CSP. Each group will have at most
five consecutive constraints, in lexicographic order. Then one BDD will be built
to represent the conjunction of the constraints in each group. The third type
called Group-10 instance is created similar to Group-5, but by using groups of
size ten. Since the size of a BDD representing conjunction of five constraints will
be usually larger than the sum of the sizes of five BDDs representing each one of
the five constraints, the sizes of the BDDs in a Group-5 instance will usually be
larger than those in the matching Group-1 instance. Hence, by using Group-1,
Group-5 and Group-10 instances of an input CSP, we can study the scalability
of the new method and the PADL06 method over increasing BDD sizes.

All our experiments are done in a Cygwin environment with Intel Centrino
1.6 GHz processor and 1 GB RAM.

The conversion of the 34 CSPs into Group-k types, for k € {1,5,10}, resulted
in 102 instances in BDD representation. To compare our new method with the
PADLO06 method, we used our solver to find a solution for each one of the 104

! http://buddy.sourceforge.net/
2 http://www.itu.dk/research/cla/externals/clib
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Table 1. Instance Characteristics. |V|: the number of variables in the input CSP. |V'|:
the number of Boolean variables required to encode the original variables. |C|: the
number of constraints. Max: the size of the largest BDD in the corresponding Group-
k instance. Total: the sum of the sizes of all the BDDs in the corresponding Group-k
instance.

Instance BDD Size
Group-1 Group-5 Group-10
Name V] |V'| |C| Max Total Max Total Max Total

and-break-complexr 414 998 852 755 38808 3540 110340 62735 459564
complex-P1 299 731 592 755 24055 13523 77414 139048 356546
complex.10 414 998 849 631 33923 4271 89448 38901 262059
complex.11 414 998 849 608 32937 4371 89168 40235 276547
complex.12 414 998 849 724 37902 5443 108263 55494 349829

complex 414 998 849 755 38804 5823 112873 60903 381951

Table 2. Solution Time (ST) and Minimal Reason Time (MRT)

Group-1 Group-5 Group-10
Name PADL0O6 NEW PADL06 NEW PADLO6 NEW
ST, MRT ST, MRT ST, MRT ST, MRT ST, MRT ST, MRT

and-break-complex 3.20, 1.03 2.94, 0.00 13.12, 7.49 7.40, 1.21 50.54, 41.02 14.62, 4.40
complex-P1 1.24,0.76 1.14, 0.03 3.88,2.27 2.98,0.16 37.13,21.52 18.17, 2.32
complex.10 5.04, 1.48 4.44, 0.01 9.19, 5.27 5.55, 0.90 58.01, 45.10 15.96, 4.89
complex. 11 5.81, 1.54 5.14, 0.01 6.47, 3.86 3.95, 0.60 17.26, 12.81 6.73, 1.31
complex. 12 2.65, 1.21 2.14, 0.04 3.15,2.43 2.07, 0.27 22.40, 18.10 6.96, 1.75

complex 3.19, 1.08 2.94, 0.01 19.91, 9.94 12.29, 1.88 227.75, 189.04 41.77, 15.20

instances, first using our new method and then using the PADL06 method.
We repeated each experiment thrice and obtained the average values. For each
instance, we noted the total time taken to find a solution, and the total time
taken for the calls made to the corresponding minimal reason method. We used
the gprof tool to measure the time taken by the minimal reason procedure calls.

Since we do not have space to list the details for all the 34 instances, we picked
five relatively large instances and present their characteristics in Table [lI The
Table (2] presents the time taken for finding a solution and the total time taken
for finding minimal reasons in both the type of experiments on the five instances.

The Figure [6 and Figure [ plots the solution time and minimal reason time
for the both the minimal reason methods, for all the instances.

The tables and figures show that the new method is at least as fast as the PADL06
method in all the used instances. The new method is even 10 times faster than the
PADL06 method. Also, the new method scales better than the PADL06 method as
the run-time difference between the new method and the PADLO06 method widens
from a Group-1 instance to the matching Group-10 instance.

In the case of the complex Group-10 instance, the PADL06 method dominates
the solution time taking 83% of the solution time, while the usage of the new
method reduces the solution time to less than a fifth.
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7 Conclusion

We have shown that the problem of finding a minimum reason for an implication
by a BDD is NP-complete. We have also presented a linear-time algorithm for
finding minimal reasons, which can be used to improve the nogood reasoning
process in hybrid constraint solvers using BDDs. Our experiments shows that
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the new method for finding minimal reasons is better than the previous method
for several instances and also scales well due to linear time complexity.
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Flexible, Rule-Based Constraint Model
Linearisation

Sebastian Brand, Gregory J. Duck, Jakob Puchinger, and Peter J. Stuckey

NICTA, Victoria Research Lab, University of Melbourne, Australia

Abstract. Nonlinear constraint satisfaction or optimisation models need
to be reduced to equivalent linear forms before they can be solved by (Inte-
ger) Linear Programming solvers. A choice of linearisation methods exist.
There are generic linearisations and constraint-specific, user-defined lin-
earisations. Hence a model reformulation system needs to be flexible and
open to allow complex and novel linearisations to be specified. In this pa-
per we show how the declarative model reformulation system CADMIUM
can be used to effectively transform constraint problems to different lin-
earisations, allowing easy exploration of linearisation possibilities.

1 Introduction

The last decade has seen a trend towards high-level modelling languages in
constraint programming. Languages such as ESRA [I], Essence [2], and ZINC [3]
allow the modeller to state problems in a declarative, human-comprehensible
way, without having to make subordinate modelling decisions or even to commit
to a particular solving approach. Examples of decisions that may depend on the
target solver are: the representation of variables of a complex type such as sets
or graphs, and the translation of constraints into those provided by the solver
to be used. Such decisions need to be taken if a concrete solver such as Gecode,
ILOG Solver, CPLEX or Eclipse is to be used directly.

The problem solving process is thus broken into two parts. First, a high-
level, solver-independent, conceptual model is developed. Second, the conceptual
model is mapped to an executable version, the design model. Typically, an iter-
ative process of solver selection, model formulation or augmentation, and model
transformation, followed by experimental evaluation, is employed.

An imbalance exists in how the steps of this process are supported in prac-
tice. For the task of model formulation, there are well-designed, open, high-level
modelling languages. In contrast, the task of model transformation is typically
done by fixed procedures inaccessible to the modeller. It is hard to see that there
is a single best set of transformations that can be wrapped and packed away. We
therefore conclude that a strong requirement on a model transformation process
and platform is flexibility.

In this paper we describe how we transform high-level models written in the
modelling language MINIZINC [4] (a subset of ZINC) into Integer Linear Pro-
gramming (ILP) models. The transformations are written in our term-rewriting

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 68[83]200s.
© Springer-Verlag Berlin Heidelberg 2008
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based model transformation language CADMIUM [5]. The rules and transforma-
tions are directly accessible to the modeller and can be freely examined, mod-
ified, and replaced. A major strength of CADMIUM is its tight integration with
the ZINC modelling language. The rules operate directly on ZINC expressions; as
a result, transformations are often very compact and comprehensible. Another
strength of the approach is easy reusability. For example, in the linearisation of
MINIZINC models we reused transformations originally designed for transforming
MINIZINC models to FLATZINC (a low-level CP solver input language).

Our computational experiments, where MINIZINC models are transformed
into CPLEX LP format, demonstrate the advantages of our system. It allows
the user to experiment with different ways of linearising logical constraints as
well as high-level constraints such as all different [67].

2 Languages and Systems

2.1 The ZiNC Family of Modelling Languages

ZINC [3] is a novel, declarative, typed constraint modelling language. It provides
mathematical notation-like syntax (arithmetic and logical operators, iteration),
high-level data structures (sets, arrays, tuples, Booleans), and extensibility by
user-defined functions and predicates. Model and instance data can be sepa-
rate. MINIZINC [4] is a subset of ZINC closer to existing CP languages that is
still suitable as a medium-level constraint modelling language. FLATZINC, also
described in [], is a low-level subset of ZINC designed as a CP solver input lan-
guage. It takes a role for CP systems comparable to that taken by the DIMACS
and LP/MPS formats for propositional-satisfiability solvers and linear solvers,
resp.

A ZINC model consists of an unordered set of items such as variable and pa-
rameter definitions, constraints, type definitions, and the solving objective. As an
example, consider the following MINIZINC model of the Golomb Ruler problem.
The problem consists in finding a set of small integers of given cardinality such
that the distance between any pair of them differs from the distance between
any other pair.

int: m = 4;

int: n = m*m;

array[1..m] of var 0..n: mark;

array[1..(m*x(m-1)) div 2] of var 0..n: differences =
[ mark([j] - mark[i] | i in 1..m, j in i+l..m ];

constraint mark[1] = 0;

constraint % The marks are ordered, and differences distinct
forall ( i in 1..m-2 ) ( mark[i] < mark[i+1] )
A all different(differences);

constraint mark[2] - mark[1] < mark[m] - mark[m-1]; % Symmetry

solve minimize mark[m] ;

Let us consider the items in textual order.
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— The first and second lines declare the parameters m and n, both of type int.

— The following two lines declare the decision variables in arrays mark and
differences. The variables of either array take integer values in the range
0..n. The index set of mark are the integers in the range 1..m. The array
differences is defined by an array comprehension.

— Next is a constraint item fixing the first element of mark to be zero. The
remaining constraints order the marks, make the differences distinct, and
finally break a symmetry.

— The final item is a solve item, which states that the optimal solution with
respect to minimising the final mark at position m should be found.

More detail about the ZINC language family is available in [3I8/4].

2.2 The CapMiuM Model Transformation System

CapMIuM [5] is a declarative, rule-based programming language based on asso-
ciative, commutative, distributive term rewriting. CADMIUM is primarily target-
ted at ZINC model transformation, where one ZINC model is transformed into
another by a CADMIUM program (mapping). A rule-based system for constraint
model transformation is a natural choice as such transformations are often de-
scribed as rules in the first place.

CADMIUM is well-suited for ZINC model transformation because of the tight
representational integration between the two languages. A CADMIUM program
is a sequence of rules of the form

CCHead \ Head < Guard | Body

where Head and Body are arbitrary terms that in particular can involve ZINC
expressions. Any expression from the current model matching Head is rewritten
to the expression Body if the rule application requirements given by CCHead and
Guard are satisfied (either of which can be absent). The rules in the program are
repeatedly applied until no more applications are possible. The obtained model
is the result of the transformation.

CADMIUM has its roots in CHR [9] but substantially extends it by several
features, briefly described in the following. See [B] for a thorough exposition.

Associative Commutative Matching. An operator o is Associative Com-
mutative (AC) if it satisfies x o (yoz) = (xoy)oz and v oy = yox. AC
operators are common, e.g. +, *, A, V, U, N. CADMIUM supports AC matching,
which means the order and nested structure of expressions constructed form AC
operators does not matter; e.g. 0 + a can match X + 0 with X = a. This re-
duces the number of rules required to express a transformation. AC matching is
a standard feature of other term rewriting languages, e.g. Maude [10].

Conjunctive Context Matching. CADMIUM supports matching based on
the pseudo-distributive property X A f(Y1,....Y,) = XA f(Y1,.. ., X AY,, ..., Y0)
of conjunction for all functions f. This is in contrast to performing classical
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distribution where the X disappears from the top-level and is distributed to
all arguments at once. Using this approach, conjunct X is wvisible in any sub-
expression S of f: we say that X is in the conjunctive context (CC) of S.

A CapmIuM rule in which a CCHead prefix is present uses CC matching. In
order for the rule to fire, CCHead must match (part of) the conjunctive context
of the expression that matches Head. CC matching can for example be used to
implement parameter substitution in constraint models by the rule

X=Cc\X<&cC.

If an equation X = C appears in the conjunctive context of an X, then this rule
rewrites X to C. Consider the expression f(a,a+b,g(a)) A a = 3. Equation
a = 3 is in the CC of all occurrences of a in the rest of the expression. After
exhaustively applying the rule, the result is £(3,3+b,g(3)) A a = 3.

CC matching is very powerful because it allows the user to match against non-
local information. As far as we are aware, CC matching is unique to CADMIUM.

User-Definable Guards. CADMIUM supports rule with guards. A rule in which
a guard is present can only be applied if the guard holds, that is, if the Guard
expression can be rewritten to true. CADMIUM provides a number of simple
guards, such as is int (X) to test whether X is an integer constant. Importantly,
guards can also be defined by the user via rules.

Staged Transformations. Beyond atomic transformations that consist of a
single rule set, CADMIUM also supports composite, staged transformations: se-
quences of atomic transformations. Each atomic transformation is applied to the
model in sequence, with a commitment to the intermediate results.

2.3 Representation of ZINC Models in CADMIUM

Conceptually, CADMIUM operates directly on ZINC expressions and items (we
emphasise this by printing ZINC keywords in bold). The following details of the
ZINC representation in CADMIUM term form are worth pointing out:

— All ZINC items in the model are joined by conjunction. Thus the ZINC model

constraint X
solve satisfy;

3;

is treated as
constraint X = 3 A solve satisfy.

The advantage is that ZINC items are in each other’s conjunctive context.
— The conjunction of ZINC items is wrapped by a top-level model functor.

This representation allows top-down model transformation in the way non-

term-rewriting-based approaches work, rewriting the entire model at once:

model Model & ...

However, in our experience, top-down model transformations are almost
never needed.
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3 Transforming Nonlinear MINIZINC into linear Integer
Programming format

There are several ways of linearising constraints. A generic method is the Big-M
approach, used to convert a logical combinations of linear constraints into a
conjunction of linear constraints. A finite domain constraint can always be writ-
ten as a logical combination of linear constraints, by reverting to some logical
definition of it.

For some high-level constraints, alternative definitions can be given that tightly
reflect their structure onto auxiliary variables, for example, 0/1 integer variables
encoding assignments of original variables.

3.1 The Generic Big-M Transformation

At the core of this linearisation approach is the fact that a disjunction (z  0)Vb,
where b is a propositional variable, is equivalently written as the inequation
x  uwbound(z) - b, where ubound is an upper bound on the value of the variable z.
Our transformation first normalises a MINIZINC model and then transforms it
into negation normal form. The next steps are based on the work by McKinnon
and Williams [6] and Li et al. [11I]. We simplified their transformation and made
some steps, such as Boolean normalisation, more explicit.

Li et al. [I1] define the modelling language £, which consists of linear arith-
metic constraints, Boolean operators, and some additional constraints such as
at most and at least. Steps of the transformation described in [I1] are:

— Transformation of £7 into negation normal form.

— Transformation of simplified £T-formulas into I'-formulas. A I'-formula is of
the form I, {P1,..., P,} and is true if at least m of {Py,..., P,} are true.
Each P; is a I'-formula, a linear constraint, or a propositional literal.

— Flattening of nested I'-formulas.

— Transformation of I'-formulas into linear constraints.

Our transformation is based on this procedure. After several normalisation
and decomposition steps, we generate ['-formulas which are then further trans-
formed into a linear form of MINIZINC. In the decomposition steps we provide
several alternative transformations, and we allow the user to experiment with
possible combinations of those alternatives. As a final step, we currently write
out the obtained linear model in CPLEX LP format, for directly feeding it into
most of the currently available ILP solvers.

We outline the major transformation steps in the following, giving actual
CADMIUM example rules for illustration.

Model Normalisation. MINIZINC allows substantial freedom in the way models

are written and so adapts to the preferred visual style of the model writer. The first

step in our conversion is to rewrite simple, equivalent notations into a normal form.

Examples are the joining of constraint items and the replacement of synonyms:
(constraint C) A (constraint D) < constraint C A D;

X=Y & X=Y;



Flexible, Rule-Based Constraint Model Linearisation 73

Predicate Inlining. We currently use a top-down transformation, traversing
the entire model term, to replace a call to a predicate (or function) by the
respective instantiated predicate body.

This is our only case of a model-wide top-down transformation. We are cur-
rently moving towards a modified ZINC term representation in which predicate
applications are wrapped in a reserved functor. Matching can then take place
against this functor, and the need for a top-down transformation will be removed.

Parameter Substitution and Comprehension Unfolding. The next steps,
while defined separately and listed in sequence, depend on and enable one an-
other. In a non-term-rewriting approach, an explicit iteration loop would be
needed to compute the mutual fixpoint. In CADMIUM, each individual atomic
transformation corresponds to a set of rules, and the composite transformation
is the union of these rule sets. Once the composite transformation has reached
stabilisation, the mutual fixpoint of the separate rule sets is obtained.

1. Parameter substitution.
We use the conjunctive context of a parameter to retrieve its value:
X=C\ X & is int(C) | C;
2. Evaluation.
Parameter substitution may allow us to simplify the model. We here apply
rules that do so by taking into account the semantics of ZINC constructs:
X V true & true;
X+ Y <& isint(X) A is int(Y) | X '+ Y;
X C & is int(C) A ubound(X) ! C | true;
The first rule simplifies a Boolean expression, the second evaluates addition
of integer constants using the CADMIUM built-in !+, while the third removes
constraints X  C that are redundant w.r.t. to the declared domain of X.
3. Compound built-in unfolding.
This step inlines predicates/functions such as forall, sum that are compound
built-ins in MINIZINC:
sum([1) & 0;
sum([E ! Es]) < E + sum(Es);
Note the CADMIUM syntax for array literal decomposition shown here.
4. Comprehension unfolding.
An example for a simple case are these rules:
[E|l XinL..Ul & L>U/| [1;
[E | XinL..Ul & [subst(X=L, E) ! [E | X in L+1..U]];
The subst term denotes a substitution and is reduced accordingly.

These transformations are not specific to the MINIZINC linearisation task.
Indeed, they are also used in the MINIZINC to FLATZINC transformation.

Decomposition of High-Level Constraints. In addition to the previously
defined normalisations and decompositions, we decompose different generic con-
straints such as the domain constraint, here in ZINC notation:

X in A..B & is int(A) A is int(B)

| A X AX B;
Xin S & is set(S) | exists([ X =D

| Din S 1);



74 S. Brand et al.

We discern two cases of the respective set. If it is in range form, the constraint
can be mapped onto two inequalities. Otherwise, it is mapped to a disjunction
over the set values, which can be written using ZINC comprehension notation.

An array lookup with a variable index, corresponding to an element con-
straint, is transformed into a disjunction over all possible index values:

Y = A[X] & is variable(X) |
exists([ X =D A A[D] =Y | D in dom(X) 1);

The expression dom(X) using the ZINC built-in dom is rewritten into the de-
clared domain of the variable X, by rules we omit here. ZINC has a variety of
such built-ins; index set to retrieve an array index set is another useful one.

An all different constraint is simply decomposed into a conjunction of
inequations of the variable pairs:

all different(X) &
forall([ X[I] # X[J] | I,J in index set(X) where I < J 1);

Minimum and maximum constraints are similarly decomposed. Furthermore,
strict inequalities and disequalities are rewritten into expressions using only in-
equalities.

Since the decomposition of high-level constraints may introduce comprehen-
sions and since further expression simplification can often be done, the rules for
comprehension unfolding and expression evaluation are again imported into this
stage.

Negation Normal Form. We transform formulas into negation normal form
in the usual way. For example

(x-y<BbAy-x<BbB) — (z 1)
is rewritten into

(k-3 B V-x B)V(z 1.

N-Ary Conjunction and Disjunction. We conjoin these binary connectives
into an n-ary form, (using functors conj,disj), which is then transformed into
I'-formula form:

disj(Cs) & gamma(Cs, 1);
conj(Cs) < gamma(Cs, length(Cs));

The second argument to gamma is the minimum number of subformulas that need
to hold. The formula from the example above becomes:

gamma ([gamma([x - y 5, y - x 5], 1), z 11, 1.

Big-M Linearisation. This is the central step. It relies on the fact that all
constraints were previously normalised. We proceed top-down, starting at the
top-most gamma formula.
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constraint gamma(Cs, M) <
constraint implied gamma(true, Cs, M, [1);
implied gamma(B, [], M, Bs) < B — sum(Bs) M;
implied gamma(B, [C ! Cs], M, Bs) &
let { var bool: Bi } in
((Bi—C) A implied gamma(B, Cs, M, [bool2int(Bi) !Bs]));

B — E F & E-F lbound(E-F) * (1-bool2int(B));

The second and third rule transform a formula B — I5,,(C) into a conjunction
of implications B; — C;. The B; are accumulated in a list, which is used for
the constraint B — >, B; m. An implication whose consequence is a gamma
formula is turned into implied gamma form again (not shown here for brevity).
The last rule finally rewrites a simple implied linear inequation into pure linear
form. The 1bound term is rewritten into a safe lower bound of its argument
expression which may include decision variables.
We optimise the linearisation by distinguishing special cases such as in

implied gamma(B, [Bi ! Cs], M, Bs) & is variable(Bi) |
implied gamma(B, Cs, M, [bool2int(Bi) ! Bsl);

which leads to fewer auxiliary Boolean variables being created.
Let us revisit part of our example. Assume z and y are in 0..10.
gamma([x - y 5, y - x 5], 1)
is stepwise transformed as follows (where we omit bool2int for brevity):
B — gamma([x -y 5, y-x 5], 1)
implied gamma(B, [x - y 5, y - x 5], 1)
(Bl —x-y B5)A®B2—y-x 5 A (B — BI+B2 1)
(x-y-5 -15%x(1 -B1)) A (y-x -5 -15%(1 - B2)) A
(BL +B2 -1 -1x(1 - B))
Boolean Variables to 0/1 Variables. In this step, we recast Boolean vari-
ables as 0/1 integer variables, by simply substituting the type:
bool < 0..1;

bool2int(B) < B;

Output to LP Format. The concluding stage prints out the linear model
in CPLEX LP format using CapMmium’s I/0 facilities. The result of applying
the transformations to the Golomb Ruler problem of Section Z1lis given in the
Appendix.

3.2 Equality Encoding for High-Level Constraints

For a constraint such as all different, the Big-M-linearisation applied to its
naive decomposition does not result in a so-called sharp formulation: one that
represents the convex hull of the constraint. Sharp formulations for a number
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of common constraints are given in Refalo [7]. At the core of many sharp for-
mulations is the explicit encoding of variable assignments. Given a variable x
with domain D(x), for each a € D(x) a propositional variable for the assignment
x = a is introduced. We write such a variable as [z = a].

In this way, a sharp linear formulation of the domain constraint x € S is

Z[[x:a]]zl A sza[[x:a]].

a€D aceD

For the all different constraint over variables x; with respective domain
D(x;), one can use the linear constraints

n

Z[[xl =a] 1 for each a € LnJ D(x;).

i=1 i=1

They represent the fact that each value in any variable domain can be used by
at most one variable. The CADMIUM rule setting up this encoding is as compact:

all different equality encoding(Xs, Xi eq a) &
forall([ sum([ Xi eq a[I,A] | I in index set(Xs) 1) 1
| A in array union([ dom(Xs[I]) | I inindex set(Xs) 1) 1);

The array Xi eq a collects the | x = a ] variables. In order to share these en-
coding variables between different high-level constraints, the link between an
original variables x and its associated encoding variables is maintained by en-
coding tokens (terms). These tokens are installed at the model top-level during
the encoding stage and are thus in the conjunctive context of any constraint
whose translation needs them.

To contrast the available approaches for all different, consider the MINI-
ZINC fragment:

array[1..n] of var -n..n: x;
constraint all different(x);

The Big-M translation of all different gives:

array[1..n, 1..n] of 0..1: B1;
array[1..n, 1..n] of 0..1: B2;
constraint
forall(i in 1..n, j in i+1..n) (
x[i] - x[§] +1 (2% n+ 1) * (1 - B1[i, j1) A
x[j1 - x[i] + 1 (2 *xn+ 1) x (1 - B2[1i, jI) A
Bi[i, jl1 + B2[i, j] 1);

while the transformation using the equality encoding results in:

array[1..n, -n..n] of 0..1: xv;
constraint
forall(i in 1..n) (

sum([ a * xv[i, a] | ain -n..n ]) = x[i] A
sum ([ xv[i, al] | ain -n..n ]) =1 );
constraint

forall(a in -n..n) ( sum([ xv[i, a] | i in 1..n 1) 1);
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The element constraint z = a[z] for a variable z and an array a of integer
constants can be represented as

i€D(x)
which is embodied in the rule

element equality encoding(A, X, Y, Xeqd) &
Y = sum([ A[D] * X eqd[D] | D indom(X) 1);

This encoding is not applicable in the case when the array has variable elements.
Our transformation verifies this and falls back to the naive Big-M decomposition
approach if needed.

The basis for these linearisations of high-level constraints comes from the
linear representation of disjunctive programs [I2]. A further generalisation would
be to directly apply this linearisation to the constraint in negation normal form.

3.3 Context-Dependent Constraint Generation

If we take into account the context of a constraint we may be able to simplify
its translation. The Tseitin transformation [I3] for converting Boolean formulas
into clausal form takes this into account, usually reducing the number of clauses
by half. For (Integer) Linear Programming there are common modelling “tricks”
that make use of context. For example, the max(y,z) expression in both of the
following cases

constraint 8 max(y,z);
solve minimize max(y,z);

can be replaced by a new x constrained by x =y A x z. In the first case,
we only need to require the existence of any value between 8 and y,z, and in
the second case, minimisation will force x to equal either y or z.

In general if a variable is only bounded from above in all constraints, we can
translate an equation defining the variable as an inequality that bounds it from
below. For example x = max(y,z) is replaced by x vy A x z as above if
x is only bounded from above, and replaced by x t A (¢ yVt z),
where t is a new variable, if x is only bounded from below.

This reasoning can be concisely implemented in rule form:

max(X, Y) < pol(ID, pos, max context(X,Y, ID));

E + pol(ID, P, F) < pol(ID, P, E + F);
E - pol(ID, P, F) & pol(ID, invert(P), E - F);

pol(ID, P, E) F < pol(ID, P, E F);
pol(ID, P, E) F < pol(ID, invert(P), E F);
pol(ID, , E) = F & pol(ID, all, E = F);

constraint pol(ID, P, E) < pol(ID, P) A constraint E;
solve minimize pol(ID, P, E) < pol(ID, P) A solve minimize E;

pol(ID, all) \ max context(X,Y, ID) < max complete(X,Y);
pol(ID, pos) \ max context(X,Y, ID) < max bounded above(X,Y);
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We add a polarity marker to each occurrence of a nonlinear expression in ques-
tion. Polarity markers then travel upwards in the expression tree until the top-
level, recording possible polarity changes. (The rules for invert, not shown here,
map pos to neg and vice versa, and all to itself). Once at the top-level, the po-
larity of the expression occurrence is known, and it can be replaced accordingly.

3.4 Constraint Relaxations

Given we have completely captured the meaning of a high-level constraint such
as element or all different by some linearisation, we are free to add other
linear relaxations of the constraints to the model in order to improve the solv-
ing behaviour. Hooker [T4] describes a number of simple and complex linear
relaxations for various high-level constraints.

As an example, consider the element constraint Y = A[X| where A is a fixed
array. We can add bounds to Y as follows:

Y = A[X] & is variable(X) A fixed array(A) |
exists([X =D A A[D] =Y | D indom(X)1) A
Y  min([A[D] | D indom(X)1) A
Y  max([A[D] | D in dom(X)1);

4 Case Studies

In this section we report on evaluations of various choices in transforming MINI-
ZINC into LP format. We show that the best choice is problem-dependent and,
therefore, that an open transformation system facilitating experimentation is
important. For reference, we also give results on transforming MINIZINC to the
low-level CP solver input language FLATZINC.

The experiments were performed on a 3.4 Ghz Intel Pentium D with 4 Gb
RAM computer running Linux. The FLATZINC models were solved by the G12
finite domain solver using its default (first-fail) search. The LP models were
solved using CPLEX 10.0 with default parameter settings. The solvers were
aborted if they did not return a result within a reasonable amount of time; this
is indicated in the tables.

4.1 Big-M Decomposition and Equality Encoding
For this comparison we use the following examples:

— eq20: twenty linear constraints;

jobshop: square job scheduling (2 x 2, 4 x 4, 6 X 6, 8 x 8);

— mdknapsk: multidimensional knapsack problem ((n,m) € {(5,3), (100, 5)});
packing: packing squares into a rectangle (size 4);

— queens: the N-queens problem (sizes 8, 10, 20);

alpha: a crypt-arithmetic puzzle;

— golomb: the Golomb ruler problem (m € {4,6,8});
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Table 1. Results of the described transformations on several different models

name MiINTZINC FrarZiNnc LP Big-M decomp. LP equality enc.
lines  lines transl.  solve lines transl.  solve lines transl. solve
eq20 63 82 0.31s 0.18 43 0.44s 0.00s "
jobshop2x2 20 18 0.28s 0.10s 37 0.40s 0.00s "
jobshop4x4 22 141 0.31s 0.18s 227 0.48s 0.02s "
jobshop6x6 24 492 0.49s 8.65s 749 0.67s 1.72s "
jobshop8x8 26 1191 0.73s >300s 1771 1.11s >300s "
mdknapsk5 3 21 16 0.29s 0.07s 25 0.42s 0.00s "
mdknapsk100 5 75 176 0.60s >300s 217 1.36s 0.61s ”
packing 32 237 0.33s  0.16s 378 0.53s 0.00s "
queens 8 9 86 0.31s 0.17s 613 0.56s 0.06s "
queens 10 9 137 0.32s 0.15s 974 0.72s 0.36s "
queens 20 9 572 0.49s  0.21s 4039 2.42s >300s ”
alpha 52 53 0.29s 0.16s 2356 1.64s 0.13s 1511 1.32s 0.51s
golomb4 11 14 0.30s 0.07s 144 0.46s 0.00s 272 0.47s 0.01s
golomb6 11 25 0.31s 0.18 807 0.69s 0.10s 1249 1.02s 0.53s
golomb8 11 40 0.32s  1.49s 2763 1.70s 19.36s 3878 3.28s >300s
perfsq10 16 89 0.28s 0.17s 949 0.91s 0.12s 493 0.60s 0.10s
perfsq20 16 161 0.30s 1.55s 3069 3.36s 1.92s 1353 1.14s 0.42s
perfsq30 16 233 0.29s 111.29s 6389 9.10s 21.00s 2613 2.34s 0.66s
warehouses 45 476 0.45s  2.29s 1480 1.14s 1.34s 1322 0.96s 0.08s

— perfsq: find a set of integers whose sum of squares is itself a square (maximum
integer 10, 20, or 30);
— warehouses: a warehouse location problem.

The results are shown in Table[[l The problems are grouped according to the
translation features they can make use of. The eq20 and mdknapsk problems are
linear and used to gauge the performance of the parts of the transformation not
concerned with linearisation as such. The job-shop, packing and queens problems
are nonlinear models without the use of high-level constraints, so the equality
encoding variant does not differ from the Big-M variant for them. The alpha and
golomb problems use all different constraints, whereas element constraints
occur in perfsq and warehouses.

First, from these experiments we can see that while the FLATZINC translations
are often smaller, and faster to achieve than the LP format, the speed of the
ILP solver means that the LP translations are often better overall.

That the translation to LP is typically slower than to FLATZINC is not un-
expected as linearisation creates more constraints. A second, central factor is
that, while FLATZINC is output by a non-CADMIUM ZINC pretty printer, the LP
format generator uses a preliminary, primitive CADMIUM I/O module to write
the files. We plan to address this issue by passing the linear model to the ILP
solver directly rather than via files; and we will also optimise CADMIUM 1/O.

Some of the slightly bigger examples (golomb8, jobshop8x8, mdknapsk100 5,
perfsq30, and queens 20) show that translations times do scale, but the solve
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times can increase dramatically. For some examples (queens, golomb, jobshop)
we can see a clear advantage of the FD solver, whereas for other examples
(mdknapsk, perfsq) the ILP solver performs better.

For the linearisation choice, we find that for our example problems the sharp
equality encodings works well for element, whereas surprisingly all different
does not benefit from it.

4.2 Context-Dependent max Constraints

For this set of benchmarks we use a model of a cancer radiation therapy prob-
lem [I5]. The model is linear with the exception of multiple occurrences of max
constraints. We compare the generic, complete linearisation and the context-
dependent one (Section [B3]). Table [ shows the results.

One observation is that the LP translation time grows quickly with the in-
stance size. In good part this is due to CADMIUM’s current suboptimal 1/0O
module: for example, approximately one third of the time for size 8 instances is
spent in the final step of printing the LP format text file.

The major observation in these benchmarks results, however, is the very sur-
prising fact that the complete linearisation is better in the majority of cases
than the context-dependent translation, which is less than half the size. This ap-
pears to be a consequence of an ill-guided ILP search in CPLEX in the context-
dependent case. While correct bounds on the solutions are often found quickly,
the search struggles to find integer solutions. We have been able to drastically

Table 2. Radiation problems: generic and context-dependent translations

Instance MINIZINC FLATZINC LP complete LP context-dependent
lines lines transl. lines transl. solve lines transl. solve

80 12 2387 3.20s 7458 16.30s  5.86s 2530 3.92s 287.2Ts
81 12 2387 2.74s 7458 16.23s  3.53s 2530 3.58s 1.71s
8 2 12 2387 2.76s 7458 16.16s 1.11s 2530 3.61s 1.11s
83 12 2387 2.70s 7458 16.10s  3.42s 2530 3.66s 22.32s
8 4 12 2387 2.73s 7458 16.22s  1.22s 2530 3.64s 1.38s
85 12 2387 2.70s 7458 16.07s  1.74s 2530 3.63s >20min
90 13 3008 3.92s 9547  25.63s  2.87s 3211 5.46s  5.28s
91 13 3008 3.90s 9547  25.62s  2.35s 3211 5.45s  2.55s
92 13 3008 3.94s 9547  25.61s  6.42s 3211 5.47s  2.29s
93 13 3008 3.88s 9547  25.69s 14.01s 3211 5.35s 170.71s
94 13 3008 3.90s 9547  25.40s 1.63s 3211 5.42s 588.70s
95 13 3008 3.93s 9547  25.76s 20.88s 3211 5.49s 21.04s
100 14 3701 5.725 11894  39.28s 16.21s 3974 8.02s 1.83s
101 14 3701 5.73s 11894  38.74s 14.25s 3974 8.02s 660.17s
10 2 14 3701 5.67s 11894  39.43s  7.88s 3974 8.00s  8.90s
10 3 14 3701 5.68s 11894  39.07s  1.45s 3974 7.96s  5.50s
10 4 14 3701 5.67s 11894  39.44s 11.82s 3974 7.95s  7.52s

10 5 14 3701 5.65s 11894  39.31s  1.76s 3974 8.01s >20min
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improve the behaviour for some instances by an informed modification of CPLEX
parametersEl

A study of this unexpected observation is not the task of this paper. This
puzzling result does, however, support our claim that the flexibility to experiment
with different model translations is important.

5 Concluding Remarks

CADMIUM is one of only a few purpose-built systems targetting constraint model
transformation, and among these, has particular strengths. Constraint Handling
Rules (CHR) is less powerful in the sense that CHR rules can only rewrite items
at the top-level conjunction. CHR implementations are also not deeply integrated
with high-level modelling languages in the way CADMIUM and ZINC are.

The Conjure system [I6] for automatic type refinement accepts models in the
high-level constraint specification language ESSENCE and transforms them into
models in a sublanguage, ESSENCE’, roughly corresponding to a ZINC-to-MINI-
ZINC translation. Conjure’s focus is on automatic modelling: the generation of a
family of correct but less abstract models that a given input model gives rise to.
Our current goal with CADMIUM somewhat differently is to have a convenient,
all-purpose, highly flexible ‘plug-and-play’ model rewriting platform.

We have only really begun to explore the possibilities of linearisation of MINI-
ZINC models using CADMIUM. There are other decompositions based on Boolean
variables [z d] which could be explored; see e.g. [ITII8]. There are many relax-
ations and combinations to explore. We can investigate how many IP modelling
“tricks” can be implemented using concise CADMIUM analysis and rewriting.

On the technical side, we believe data-independent model transformation is a
promising direction to take. It would for example mean to postpone unfolding
comprehensions, and to transform according to the derived rather than present
kind of an expression (i.e. constant vs. variable at solve time). We would expect
transformation efficiency to greatly improve in this way.

Acknowledgements. This work has taken place with the support of the mem-
bers of the G12 project.
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Minimize mark{3} 0 <=V_98 <=1

Subject To 0 <=V_95 <=1
mark{0} = 0O 0 <=V_96 <=1
mark{1} >= 1 0 <=V_93 <=1
mark{2} - 1 differences{3} - 1 mark{1} = 0 0 <=V_94 <=1
mark{3} - 1 differences{4} - 1 mark{1} = 0 0<=V_91 <=1
mark{3} - 1 differences{5} - 1 mark{2} = 0 0 <=V_92 <=1
differences{0} - mark{1} = 0 0 <=V_89 <=1
differences{1} - mark{2} = 0 0 <=V_90 <=1
differences{2} - mark{3} = 0 0 <=V_87 <=1
mark{1} + mark{2} - 1 mark{3} <= -1 0 <=V_88 <=1
mark{1} - 1 mark{2} <= -1 0 <=V_85 <=1
differences{5} + 17 V_107 - 1 differences{4} <= 16 0 <=V_86 <=1
-1 V_108 - 1 V_107 <= -1 0<=V_.83<=1
differences{4} + 17 V_108 - 1 differences{5} <= 16 0 <=V_84 <=1
differences{5} + 17 V_105 - 1 differences{3} <= 16 0 <=V_81 <=1
-1 V_106 - 1 V_105 <= -1 0<=V_._82<=1
differences{3} + 17 V_106 - 1 differences{5} <= 16 0 <=V_79 <=1
differences{4} + 17 V_103 - 1 differences{3} <= 16 0 <=V_80 <=1
-1 V_104 - 1 V_103 <= -1 0 <= V_107 <=1
differences{3} + 17 V_104 - 1 differences{4} <= 16 0 <=V_108 <=1
differences{5} + 17 V_101 - 1 differences{2} <= 16 0 <= V_105 <=1
-1 V_102 - 1 V_101 <= -1 0 <= V_106 <=1
differences{2} + 17 V_102 - 1 differences{5} <= 16 0 <=V_103 <=1
differences{4} + 17 V_99 - 1 differences{2} <= 16 0 <=V_104 <=1
-1 V_100 - 1 V_99 <= -1 0 <=V_101 <=1
differences{2} + 17 V_100 - 1 differences{4} <= 16 0 <=V_102 <=1
differences{3} + 17 V_97 - 1 differences{2} <= 16 0 <= V_100 <=1
-1 V_98 - 1 V_97 <= -1 General
differences{2} + 17 V_98 - 1 differences{3} <= 16 mark{0}
differences{5} + 17 V_95 - 1 differences{1} <= 16 mark{1}
-1 V_96 - 1 V_95 <= -1 mark{2}
differences{1} + 17 V_96 - 1 differences{5} <= 16 mark{3}
differences{4} + 17 V_93 - 1 differences{1} <= 16 differences{0}
-1 V_94 - 1V_93 <= -1 differences{1}
differences{1} + 17 V_94 - 1 differences{4} <= 16 differences{2}
differences{3} + 17 V_91 - 1 differences{1} <= 16 differences{3}
-1 V_92 - 1V_91 <= -1 differences{4}
differences{1} + 17 V_92 - 1 differences{3} <= 16 differences{5}
differences{2} + 17 V_89 - 1 differences{1} <= 16 V_80
-1 V_90 - 1 V_89 <= -1 V_79
differences{1} + 17 V_90 - 1 differences{2} <= 16 V_82
differences{5} + 17 V_87 - 1 differences{0} <= 16 V_81
-1 V.88 -11V_87 <= -1 v_84
differences{0} + 17 V_88 - 1 differences{5} <= 16 V_83
differences{4} + 17 V_85 - 1 differences{0} <= 16 V_86
-1 V.86 - 1V_85 <= -1 V_85
differences{0} + 17 V_86 - 1 differences{4} <= 16 V_88
differences{3} + 17 V_83 - 1 differences{0} <= 16 V_87
-1 V_84 - 1V_83 <= -1 V_90
differences{0} + 17 V_84 - 1 differences{3} <= 16 V_89
differences{2} + 17 V_81 - 1 differences{0} <= 16 V_92
-1 V.82 -1V.81l <= -1 V_91
differences{0} + 17 V_82 - 1 differences{2} <= 16 V_94
differences{1} + 17 V_79 - 1 differences{0} <= 16 V_93
-1 V_80 - 1V_79 <= -1 V_96
differences{0} + 17 V_80 - 1 differences{1} <= 16 V_95

Bounds V_98
0 <= mark{0} <= 16 V_97
0 <= mark{1} <= 16 V_99
0 <= mark{2} <= 16 V_100
0 <= mark{3} <= 16 V_102
0 <= differences{0} <= 16 V_101
0 <= differences{1} <= 16 V_104
0 <= differences{2} <= 16 V_103
0 <= differences{3} <= 16 V_106
0 <= differences{4} <= 16 V_105
0 <= differences{5} <= 16 V_108
0 <=V_99 <=1 V_107
0 <=V_97 <=1 End
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Abstract. Declarative authorization languages promise to simplify the
administration of access control systems by allowing the authorization
policy to be factored out of the implementation of the resource guard.
However, writing a correct policy is an error-prone task by itself, and
little attention has been given to tools and techniques facilitating the
analysis of complex policies, especially in the context of access denials.
We propose the use of abduction for policy analysis, for explaining ac-
cess denials and for automated delegation. We show how a deductive
policy evaluation algorithm can be conservatively extended to perform
abduction on Datalog-based authorization policies, and present sound-
ness, completeness and termination results.

Keywords: access control, abduction, authorization language, Datalog.

1 Introduction

Authorization is the task of granting or denying access to a system’s resources ac-
cording to a policy. Traditionally, authorization policies have been implemented
by access control lists (ACL) or capabilities provided by the operating system,
sometimes augmented by groups or roles. However, there are many applications
for which these mechanisms are too inflexible, not sufficiently expressive and
provide the wrong level of abstraction. For example, access to electronic health
records is regulated by a huge number of laws that are both complex and prone
to change. Decentralized applications such as grid systems require support for
delegation of authority and attribute-based constraints.

Such requirements have led to the development of trust management systems
and declarative authorization languages for flexible, expressive application-level
access control (e.g. [I2I345]). An authorization policy is then written as a set
of rules that are both human readable and machine enforceable. This approach
alms to increase the usability and scalability of access control systems: policies
written in such languages are more concise and have a lower viscosity than
ACLs, and provide a much higher level of abstraction, thus facilitating a closer
representation of the intended policy.

P. Hudak and D.S. Warren (Eds.): PADL 2008, LNCS 4902, pp. 84[99] 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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However, comprehending and predicting the consequences of a policy is diffi-
cult, as policies can be complex and contain hundreds of rules, and each access
grant is based on the construction of a logical proof of compliance with respect
to this policy. Thus, writing a correct policy is still a highly error-prone task. We
conjecture that the current lack of tools for analyzing policies remains a major
obstacle to a wider adoption of authorization languages.

In this paper, we develop algorithms for analyzing the consequences of declar-
ative authorization policies. Many existing authorization languages are based on
negation-free Datalog or are translated into Datalog for evaluating access re-
quests. (A Datalog clause is a first-order definite Horn clause without function
symbols.) Datalog is sufficiently expressive for a wide range of policies, including
delegation, which requires recursion. Furthermore, Datalog is decidable and can
be evaluated efficiently. Hence, to maximize generality, our algorithms work on
policies specified in Datalog.

In particular, we focus on the tasks of explaining access grants and access
denials. In the former case, the question we are trying to answer is “why is a
given request granted?”. It is easy to see that the proof graph contains exactly
the necessary information for constructing the (possibly textual) explanation.
The basic evaluation algorithm that is used for deciding access requests can be
easily extended to construct a copy of the proof graph during evaluation.

In the case of access denial, the question is “which authorization facts or cre-
dentials were missing that would have led to an access grant?”. This turns out
to be a harder question, as the failed partial proof does not contain enough in-
formation to answer it. Moreover, there are in general infinitely many different
answers, but often only finitely many “interesting” or “useful” ones. We pro-
pose to apply abductive techniques for finding the set of meaningful answers.
Abduction [6] is a reasoning paradigm that has been used for planning, fault
diagnosis and other areas in Al, but has not previously been considered for ana-
lyzing authorization policies. Many algorithms have been developed for various
variants of abduction (see [7] for an extensive survey); in this paper, we show
that a deductive evaluation algorithm that is used for deciding access requests
can be conservatively extended to perform abduction of authorization facts and
credentials. Thus we show that existing implementations of Datalog-based au-
thorization engines can be leveraged and extended with little effort to facilitate
this kind of analysis. Moreover, we show that this algorithm can be used for
multiple purposes: (1) as the basis of a tool helping security administrators to
write and to debug policies, (2) for providing users with an answer in the case
of an access denial that is more helpful than a mere “no”, and (3) to compute
sets of missing credentials in automated distributed delegation scenarios.

The remainder of the paper is structured as follows: Section [ first presents a
non-deterministic terminating algorithm for evaluating policies. The algorithm
is extended to construct proof graphs. A second extension is developed that
computes sets of missing facts that, if added, would lead to a positive access
decision. Section [ presents techniques for guaranteeing that the algorithm ter-
minates. Section Ml discusses three application scenarios to illustrate the different
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ways in which the algorithm could be used. In Section [0l we discuss related work
and conclude. A technical report [§] contains full proofs.

2 Adding Abduction to Policy Evaluation

The basic authorization problem consists of deciding whether an access request
complies with an authorization policy and a set of credentials. For Datalog-
based policies, this amounts to deductive query evaluation. Tabling resolution
algorithms are proposed in [9] and [5] for evaluating queries against Datalog-
based authorization policies. These algorithms are easy to implement and are
guaranteed to terminate due to tabling [TOITT].

Here we provide a generalization of these algorithms, presented as state tran-
sition systems. The non-deterministic presentation lends itself to parallel im-
plementations; moreover, it also leads to simpler soundness, completeness and
termination proofs. Section instantiates this generalized tabling scheme to
a purely deductive policy evaluation algorithm. The evaluation algorithms in
[9) and [5] can be seen as straightforward deterministic implementations of this
general scheme. Section illustrates a simple extension of the first one, which
facilitates the construction of proof graphs, e.g. for explaining positive access
decisions. Finally, Section [Z4] extends it further to perform abduction, which
computes the dual of the basic authorization problem, namely the sets of facts
or credentials which, according to the policy, would grant an authorization re-
quest. As shown in Section dl this algorithm can be applied to explain access
denials, to analyze policies and to provide automated distributed delegation.

2.1 An Extensible Scheme for Policy Evaluation

Preliminaries. We use the terms groundness, substitution, unifier, most general
unifier (mgu) and (fresh) variable renaming in their standard meanings. We
assume a denumerable set of variables X and a first-order signature with a
countable (possibly infinite) set of constants C and a finite set of predicate names
(but no function symbols). An atom P consists of a predicate name applied to
an ordered list of terms, each of which is either a variable or a constant. Clauses
are of the form Py « P. The atom P is referred to as the head, and the (possibly
empty) finite sequence of atoms P as the body of the clause. A clause with an
empty body is also called a fact. A policy P is a finite set of clauses.

The semantics of a policy P is given by the least fixed point of the immediate
consequence operator Tp [12):

Tp(I) ={Py0 : (Po < Pi,...,P,) € P, P eI for each i, Pyf ground}

We denote the least fixed point of T» by T%(0). Intuitively, it contains all ground
atoms that are deducible from the policy. The most general unifier of atoms P
and @ is denoted by mgu(P, Q). We say that P is subsumed by @ (also written
P < Q) iff P = Q0 for some substitution 6.
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In our examples, we write variables in italics, constants in typewriter font,
and predicate names in sans serif.

An authorization policy defines authorization-relevant predicates such as
canRead, canWrite etc. Upon an access request, the resource guard issues a query
(e.g. “canRead(Alice,Foo)?”) to be evaluated against the policy. Usually, the
policy is composed of the locally stored policy plus a set of facts obtained from
(user-submitted or fetched) credentials that may support the request. We will
later show examples of policies and their uses.

Description of the Scheme. The algorithms described in the following subsec-
tions are instantiations of a state transition system that processes nodes of the
following form:

Definition 2.1 (Nodes). A node is either a root node (P) where P is an atom,
or a tuple (with at least 3 fields) of the form (P;@;S;...), where the atom P is
called the index, the (possibly empty) sequence of atoms @ the subgoals, and the
atom S the partial answer. If the list of subgoals @ is empty, a node is called
an answer node with answer S. Otherwise it is called a goal node, and the first
atom in @ is its current subgoal.

Intuitively, the list of subgoals Q contains the atoms that still have to be solved
for the goal P. The subgoals are solved from left to right, hence the head of the
list is the current subgoal. The current subgoal can be resolved against another
answer node, which may entail instantiations of variables which will narrow down
the partial answer S. The partial answer may eventually become a proper answer
if all subgoals have been solved.

Note also that tuples may have more than three fields, which allows us to
instantiate the algorithm scheme to perform various computational tasks. In its
standard form, it implements ordinary deduction as outlined in Section 221 We
may add an additional field 7 containing the nodes which justify the derivation
of the current node; this will allow us to reconstruct proof graphs in Section 2.3
Lastly, we will introduce a field A containing atoms which were just assumed to
hold when deriving the current node, and thus yield an abductive algorithm in
Section 241

Furthermore, the algorithm makes use of two tables:

Definition 2.2 (Answer and Wait Tables). An answer table is a partial
function from atoms to sets of answer nodes. A wait table is a partial function
from atoms to sets of goal nodes.

We denote the answer and wait tables in the algorithm by Ans and Wait, re-
spectively. The set Ans(P) contains all answer nodes pertaining to the goal (P)
found so far. The set Wait(P) contains all those nodes whose current subgoal is
waiting for answers from (P). Whenever a new answer for (P) is produced, the
computation of these waiting nodes is resumed.

The algorithm is given in Table [I] as a transition system defined by a rela-
tion — on states of the following form:
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Table 1. Generic tabling algorithm

(root) ({(P)}WN, Ans, Wait) — (N UN’, Ans, Wait)
if N’ = generate,(P)

(ans) ({n}WN, Ans, Wait) — (N UN", Ans[P — Ans(P) U {n}], Wait)
if n is an answer node with index P
An € Ans(P) : n=<n’
N = U, e wait( py resolve(n”, n)

(goaly) ({n} WN, Ans, Wait) — (N UN", Ans, Wait[Q' — Wait(Q') U {n}])
if n is a goal node with current subgoal @
3Q" € dom(Ans) : Q <X Q'
N = U e ans(qr) Tesolve(n, n')

(goala) ({n} & A", Ans, Wait) — (N"U{(Q)}, Ans[Q — 0], Wait[Q — {n}])
if n is a goal node with current subgoal @

V Q' € dom(Ans) : Q A Q'

Definition 2.3 (States). A state is a triple (N, Ans, Wait) where N is a set
of nodes, Ans is an answer table, and Wait is a wait table.

A state of the form ({(P)},{P — 0},{P — 0}) is an initial state. A state S
is a final state iff there is no state S’ and such that S — §'.

We have left the description of the algorithm generic with respect to the following
choices:

the structure of tuples (beyond the first three fields)
the subsumption relation < on answer nodes

the procedure resolve(n,n’)

the procedure generate, (P)

W

Intuitively, if n < n’ (n is subsumed by n’) holds, then the answer node n provides
no more information than n’; in the algorithm, we can thus discard n and poten-
tially ensure that the answer set is kept finite. The procedure resolve(n,n’) is
intended to take a goal node n and an answer node n’ and combine the current
subgoal of n with the answer provided by n’ to get a new node with a simpler
subgoal. The procedure generate,(P) is intended to generate a set of tuples
for a given query (P) by resolving P against the rules of program P.

Starting in an initial state, rule (root) generates answer and goal nodes for a
query (P). Answer nodes are processed by (ans) which inserts them into Ans(P)
if they are not subsumed by the answers already present there; likewise they are
resolved against all nodes currently waiting for an answer to P. Goal nodes are
either handled by (goal;) or (goals), depending on whether the current subgoal
is subsumed by an atom in the domain of the answer table. If it is, the already
existing answers to that atom can be reused for the current subgoal, and the
goal node is added to the wait table in (goal;). Otherwise, (goals) spawns a new
root node, and initializes the answer and wait tables.
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2.2 Deductive Policy Evaluation

In its simplest instantiation, the algorithm performs ordinary deduction, i.e.
starting in an initial state with root node (P) it will terminate in a state where
Ans(P) represents all instantiations of P which are deducible from the policy
P. We obtain this instantiation by defining:

1. Tuples are of the form (P; Q: S).
2. (P;[];S) =p (P;[];9") iff S=9.
3. Let n = (;[]; Q") be an answer node,ﬂand Q" a fresh renaming of Q.
2P 10. G- _ J{(PQ0; 50)} if 6 = mgu(Q, Q") exists,
resolve’((P3[Q, QJ; ),m) = {@ otherwise
1. generatel(P) = Ug. g cp resolve’(P: @, G Q). (Pi [J; ')
where P’ is a fresh renaming of P.

The subsumption relation =<p causes all answer nodes to be discarded whose
partial solutions are “more instantiated” and therefore less general than already
existing answers.

Example 2.4. The following policy allows the file Foo to be read by Bob and
every employee who is associated with any work group (in particular, Alice):

canRead(z, Foo) « isEmployee(x), inWorkgroup(z, y).
canRead(Bob, Foo).

isEmployee(Alice).

inWorkgroup(Alice, WG23).

Suppose the algorithm is started in an initial state with query (canRead(z, Foo)).
The only possible start transition is (root), thus generate’ (canRead(z,Foo)) is
called and produces a goal node

ng = (canRead(z, Foo); [isEmployee(x), inWorkgroup(z, y)]; canRead(z, Foo))

and an answer node (canRead(z,Foo); []; canRead(Bob, Foo)). Eventually, the goal
node will be resolved against the last two facts in the policy to yield a second an-
swer (canRead(z,Foo);[];canRead(Alice,Foo)). The algorithm terminates with
no further answers.

2.3 Constructing Proof Graphs

A simple extension of the above instantiation reconstructs the proof graphs for
every answer in Ans(P):

1. Tuples are of the form (P; Q; S; Cl), where Clis a clause in P and 7 is a
sequence of answer nodes called child nodes.

2. (P;[];S; ;) 2c (P [];87 5 ) iff =5

3. Let n={(;[];Q’; ; ) be an answer node, and Q" a fresh renaming of Q'.
B {(P; Q0; S0; [ii, n]; CI)}
resolve®((P;[Q,Q]; S;ii; Cl),n) = if 6 = mgu(Q, Q") exists,

1] otherwise
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r Y . .
canRead(Alice,Foo) > canRead(z,Foo) « isEmployee(x),inWorkgroup(z,y)
“ i

. v S \r S
isEmployee(Alice) inWorkgroup(Alice, WG23)
“ J S

J

Fig. 1. Proof graph related to Example [Z4]

4. Let P’ be a fresh renaming of P.
generate’, (P) = Uig—drep resolve® ((P;[Q, Q; Q;[]; Cb, (P;[]; P';[]; CIY)

When resolving a goal against an answer node, the answer node is inserted as a
new child node, as justification for the resolution step. In order to reconstruct
the proof graph, an answer node is interpreted to have edges pointing to each
of its child nodes and an edge pointing to the rule Rl which has been used to
derive that particular answer. Figure [l shows a proof graph for the derivation
of canRead(Alice,Foo) in Example [Z4

Proof graphs are useful for auditing and explaining positive access decisions.
If the predicates are associated with meta-information on how they can be trans-
lated into natural language, the proof graph could also be represented as a sen-
tence such as “Alice can read Foo because Alice is an employee and Alice is in
workgroup WG23”.

2.4 Abductive Policy Evaluation

In our setting, the term abduction relates to the following problem. Given an
atom P and a policy P, find all sets A of atoms such that P is deducible from
P augmented by A. The set A is called an abductive solution for query P, and
we require that the predicate names occurring in A are from a given set of
abducible predicate names. The choice of the abducibles usually depends on the
application domain and the kind of analysis we want to perform. In many cases,
we are interested in all possible abductive solutions, so we specify all predicate
names in P to be abducible. We define A to be the set of all ground instantiations
of abducible predicates.

In the context of decentralized authorization, the parameters of the abduc-
tive solution may be unknown and may thus have to be left uninstantiated. For
example, the solution could specify a delegation chain where the identities of
the intermediate delegators cannot be fixed a priori. Therefore, the abductive
solutions we are interested in may contain variables that can be arbitrarily in-
stantiated; this is sometimes referred to as floundering abduction. This way,
each solution can represent an infinite number of ground solutions. We can pro-
vide a relatively simple algorithm to solve the floundering abduction problem
(compared to e.g. [I3IT4]) mainly because our policies are monotonic.

The generic tabling scheme is instantiated as follows:

1. Tuples are of the form (P; Q; S; A), where A is a set of atoms called the
residue.
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2. (P;[];S;4) 24 (P;[]; 8,47 iff |A] > |A’] and there exists a substitution
0 such that S = 5’0 and A D A’6.

3. Let n = (;[];@Q;4") be an answer node, and Q”, A” fresh renamings of
QA
= {(P;Q0;56; A0 U A”6)}
resolve® ((P;[Q,Q]; S; A),n) = if 0 = mgu(Q, Q") exists,
1] otherwise

4. generate%)A(P) = U(Q<—Q)e7> resolve ((P;[Q, @], Q; 0, (;[]; P;0)) U
{(P;[]; P;{P}) : P is abducible}

The main idea is thus to extend tuples with a residue A, containing atoms
which are just assumed to hold in the process of the algorithm. Such atoms are
initially inserted into the residue by generategp’ 4 Whenever an abducible goal
(P) is encountered. They are then propagated using resolve® such that for each
hypothetical answer S obtained, A expresses which atoms must be added to P
in order to be able to deduce it.

In general, there are infinitely many abductive solutions: by monotonicity,
any extension of an abductive solution is trivially also an abductive solution.
Clearly, the abductive algorithm should only consider solutions that are not
simple supersets of already existing ones. Similarly, we are not interested in a
new solution that is an instantiation of (and thus less general than) an already
existing one. The subsumption relation <, makes sure that such “uninteresting”
answers are not considered.

The correctness of the algorithm is formalized by the following theorems.

Theorem 2.5 (Soundness). If (N, Ans, Wait) is reachable from an initial
state Sy then for all P € dom(Ans): (P’;[ ];S;A) € Ans(P) implies that for
all substitutions U such that all elements of A9 are ground it holds that P = P’,
SY = P, and SY € T, 55(0).

Theorem 2.6 (Completeness). If Sy = (N, Ans, Wait) is a final state reach-
able from an initial state Sy then for all P € dom(Ans): S € T 4(0) and S < P
implies that there exists a substitution ¥, an atom S’, and a residue A such that

S0 =25, A9 C A, and (P;[];S'; Ay € Ans(P).

Example 2.7. Consider again the program of Example 24 but assume that
it no longer contains the atom inWorkgroup(Alice, WG23). Furthermore, suppose
that both isEmployee and inWorkgroup are abducible predicate names.

For query (canRead(z,Foo)) the procedure generate}, 4 executes as the one
described in Example 24 and produces in particular the goal node ng. Using
(goalz), a new root (isEmployee(x)) will be inserted. The call to the function
generatel, ,(isEmployee(z)) produces answer nodes

(isEmployee(z)); [ ]; isEmployee(Alice); ()
(isEmployee(z); [ |; isEmployee(z); {isEmployee(z)})
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Upon termination of the algorithm, Ans(canRead(z,Foo)) contains answer node
which exhibit the following answer/residue pairs:

(canRead(Bob,Foo), ()
(canRead(Alice,Foo), {inWorkgroup(Alice,y)})
(canRead(z,Foo), {isEmployee(x), inWorkgroup(z, y)})

The first one does not require any assumptions, and the other two give sets
of hypothetical assumptions in order for answers of a particular shape to hold.
For example, to grant read access for Alice, she would have to show that she
is member of some work group y. All other possible abductive solutions are
subsumed by these three answers.

3 Termination Conditions

The abduction algorithm from Section 24 is guaranteed to terminate if there
is a finite set of answers such that every valid answer would be subsumed by
some element in the set. However, there are cases in which every complete set
of answers is infinite and the algorithm does not terminate.

Example 3.1. Consider the policy
canRead(user, file) < deleg(delegator, user, file), canRead(delegator, file).

In this example, canRead(x,y) indicates that principal x has read access to re-
source y, and deleg(x,y, z) indicates that principal 2 delegates read access for
resource z to principal y. This policy implements a simple variant of discre-
tionary access control: users can delegate read access if they have read access
themselves. The abductive query canRead(Alice,Foo) has an infinite set of an-
swers with growing residues:

{canRead(Alice,Foo)}

{deleg(z1,Alice, Foo), canRead(x1,Foo)}

{deleg(z1,Alice,Foo), deleg(xa, x1,Fo0), canRead(x2, Foo)}
{deleg(x1,Alice,Foo), deleg(xz, z1,Foo), deleg(z3, x2,Foo), canRead(z3,Foo)}

The answers do not subsume each other: being able to provide the missing facts
corresponding to one of these answer does not imply being able to provide the facts
corresponding to any other answer. Clearly, the algorithm does not terminate.

There are different ways to approach this problem. If the algorithm is used
for debugging policies or for explaining access denials to users, non-termination
may not be a serious problem, if the answers can be returned one by one. Ideally,
the answers would be returned in some meaningful order, e.g. sorted by simplic-
ity. This can be achieved by serializing the non-deterministic algorithm into a
deterministic one with a fixed order of transitions.

Sometimes, however, it is important to ensure both termination and com-
pleteness. For example, the algorithm could be used to verify that there is no
abductive answer of a certain form; this would require a complete set of abduc-
tive solutions. This section discusses various strategies of ensuring termination.
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3.1 Subsumption Weakening

One such strategy is to replace the subsumption relation <, by a weaker re-
lation. Intuitively, a weaker subsumption relation has the effect of filtering out
more answers in the (ans)-transition; in other words, fewer answers are deemed
“relevant” or “interesting”. As long as this alternative subsumption relation
enjoys a sort of compactness property (essentially that it is not possible to in-
definitely keep adding new answers that are not subsumed) then the algorithm
is guaranteed to terminate.

Theorem 3.2. Let T be a partial order on nodes such that in every infinite
sequence of nodes ny,na, ... containing only a finite number of distinct constants,
there are nodes n; and n; with i < j and nj C n,. If the subsumption relation
=u on nodes in the algorithm is replaced by T then all transition paths starting
from an initial state are of finite length.

The following definition specifies two examples of subsumption relations that
satisfy the condition of the theorem.

Definition 3.3. Let n = (P;[];.5; A) and n’ = (P;[];S"; 47). Then n Ty n' iff
S =< 8" and the predicate names occurring in A’ are a subset of the predicate
names occurring in A. Let M be a positive integer. Then n Ty n' iff |A| > M
orn =<, n.

The first relation, Cg, is useful if one is only interested in the predicate names
of the missing facts, not their parameters. For example, a security administrator
may be interested in the question “is it possible for Alice to gain read access
to Foo if someone, no matter who, is granted write access?”. Here, the admin-
istrator is only interested in whether an abductive answer containing canWrite
exists.

The second relation, C,;, is parameterized on a constant M and filters out
answers with more than M missing facts. This method could be used in the non-
termination example above to ensure termination by cutting off the delegation
chain at a certain maximum length.

3.2 Static Termination Analysis

The advantage of weakening the subsumption relation is a strong termination
guarantee for all possible policies, queries and sets of abducibles. The downside
of this approach is a correspondingly weaker completeness result: completeness
only holds with respect to the subsumption relation.

We now develop an alternative approach that guarantees termination under
the original subsumption relation, as long as the policy satisfies a certain prop-
erty. To gain an intuition for this property, consider the necessary conditions for
non-termination. The algorithm does not terminate only if there is an infinite
sequence of abductive answers, each of which is not subsumed by any previous
answer. This is only possible if the residues A are growing unboundedly. Since
the answers can only contain the (finitely many) predicate names and constants
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occurring in the policy and the query, it must be the case that there is a predi-
cate name p such that for all integers N there is always a residue in the sequence
in which there are more than N occurrences of p. But this is only possible if the
policy is recursive.

Verbaeten [15] provides a sufficient termination condition for general abductive
logic programs that requires non-recursivity. But recursion plays an important
role in authorization policies, for example for specifying delegation. Fortunately,
due to the subsumption check, recursion does not always lead to non-termination.
In order for the sequence to pass the subsumption condition, the p-atoms in the
residues must form increasingly bigger structures that are connected via an un-
bounded number of shared variables. In Example B.Jl we can see that non-
termination stems from the recursive canRead condition, and furthermore the
sharing of the variable delegator with a second body predicate which is not in the
head of the clause: this essentially causes the creation of an increasing linked struc-
ture of deleg atoms with newly created, shared variables.

This leads to a necessary condition for non-termination, the negation of which
is then a sufficient condition for termination. The following definition is used in
the formalization of the condition.

Definition 3.4. A clause R — Risan unfolding of a clause P «— Py, ..., P, ..., P,
if there exists a clause @ « Q € P such that P; and @ unify with mgu 6, and
R=Phand R = (P1,....,Pi_1,Q, Pip1, ..., P,)6. A clause C can be unfolded to
yield a clause C” if C" is obtained from C' by 0 or more unfolding transformations.

Theorem 3.5. Let P be a set of clauses such that no clause can be unfolded to
yield a clause with the following property:

— The head predicate occurs in a body atom P.
— It has a second body atom Q that is abducible and shares a variable with P
which does not occur in the head.

Then all transition paths starting from an initial state are of finite length.

The condition in Theorem B3 is decidable; in fact, a static analyzer for check-
ing it can be written in Prolog in less than a hundred lines. The static analyzer
could then be run before an abductive query, and if the condition is not satisfied,
the user could be warned that evaluation of the query may not terminate. Pre-
liminary experiments have shown that the condition gives a relatively accurate
approximation for non-termination. In particular, many recursive policies can
be shown to guarantee termination.

4 Application Scenarios

This section illustrates three possible applications of the abduction algorithm in
the area of policy-based access control.
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4.1 Explaining Access Denials to Users

In current access control systems, the user is often left without guidance if access
is denied. Consider the following policy of some company:

canRead(z, /workgroup23/) « isEmployee(z), inWorkgroup(z, WG23).
canRead(z, /workgroup23/) < isManager(z).

Suppose employee Alice submits the credential isEmployee(Alice) upon log-
on to the authorization system, but forgets to submit the credential that she is
member of workgroup WG23. If she then tries to access the folder /workgroup23/,
she will just get the answer “access denied”. Using the abduction technique, the
produced residues {inWorkgroup(Alice,WG23)} and {isManager(Alice)} could
be used to construct the more helpful message “access would have been granted
if you had shown that you are a member of work group WG23 or that you are
a manager”.

If parts of the policy itself are considered confidential, the abductive solutions
can be filtered by a disclosure meta-policy. Disclosure policies have been studied
extensively in the area of automated trust negotiation (e.g. [I6T7/TE]). A simpler
(but slightly less fine-grained) approach would be to tag particular atoms in
clause bodies that must not be abduced.

4.2 Administration of Authorization Policies

The next example illustrates the use of the abduction algorithm in a policy
analysis and debugging tool. Consider the following example rules that are part
of a policy of an electronic health record (EHR) service:

treatingClinician(cli, pat) «— (1)
roleMember(pat, Patient), roleMember(cli, Clinician), consent(pat, cli).

canReadEHR(cli, pat, subj) «— (2)
treatingClinician(cli, pat), nonSensitive(suby).

canReadEHR(¢li, pat, Psych) «— (3)
treatingClinician(cli, pat), isCertifiedPsychiatrist( cli).

canReadEHR(pat, pat, subj) — (4)
roleMember(pat, Patient), nonSensitive(suby).

Rule () specifies that a clinician cli is a treating clinician of patient pat if the
patient has given consent to treatment. The predicate canReadEHR(z, pat, subj)
is used to check if principal x is permitted to read patient pat’s record items on
subject matter subj, where subject matters range over categories such as psychi-
atry, cardiology, radiology etc. Some subject matters, such as Psych, are deemed
sensitive and have stricter access requirements. The predicate nonSensitive(suby)
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defines the range of subjects that are deemed non-sensitive. Rule () allows
clinicians to read their patients’ record items on non-sensitive subjects. Rule (B])
specifies that only psychiatrists are permitted to access their patients’ psychiatric
data. Finally, Rule (@) permits patients to view their own data, but only the items
regarding non-sensitive subject matters.

The rationale behind Rule (@) is that patients should not be allowed to access
data that could potentially distress them if read without professional guidance. In
particular, they should not be able to autonomously access their psychiatric data.
In order to check if the policy really implements the intended behavior, the se-
curity administrator can issue the abductive query canReadEHR(pat, pat, Psych)
to see if there is a way for patients to access their own psychiatric data.

Assuming that all predicates apart from canReadEHR and treatingClinician are
abducible, we obtain an answer with residues

{roleMember(pat, Patient), nonSensitive(Psych)}.

This is easily dismissed as unproblematic if the administrator can verify that
there is no way of inserting a fact nonSensitive(Psych). But we also get a second
answer with residue

{roleMember(pat, Patient), roleMember(pat,Clinician),

isCertifiedPsychiatrist(pat), consent(pat, pat)}.

This answer is more troublesome: a patient can read what her psychiatrist has
written if she happens to be a certified psychiatrist too and has given consent
to treat herself. This may or may not be regarded as a bug in the policy; but in
any case, as there are no further abductive answers, and by completeness and
termination of the algorithm, it is guaranteed that there are no further loopholes
in the policy.

4.3 Automated Delegation

The following scenario takes place in a multi-domain grid computing environ-
ment. Alice is a user who wishes to submit a job to be computed on a grid
compute cluster. She knows that during the execution of her job, a node from
the compute cluster will have to access her file alice.dat stored on a file
server in a different domain. Therefore, at some point, an authorization query
of the form canRead(Node, alice.dat) will be evaluated on the file server. Sup-
pose the file server’s policy contains the rule from Example B and the fact
canRead(Alice,alice.dat).

As Alice’s job may take many days to complete, she wants to know in advance
which delegation credentials she has to submit to the file server, so she sends the
abductive query canRead(node,alice.dat) to the server. Her query contains a
variable node in place of the node that will eventually access her file, because
she cannot know its identity in advance.
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The first returned answer is the trivial answer where node is instantiated to
Alice and the residue is empty. The second answer is uninstantiated and has
the singleton residue {deleg(Alice, node,alice.dat)}. This would require direct
delegation to the node, which is not convenient as its identity is not known to
Alice. The third answer has residue

{deleg(Alice, z,alice.dat), deleg(x, node, alice.dat)}.

This answer represents a delegation chain of depth 2 and is the most useful in this
situation, because Alice knows the identity of the compute cluster’s scheduling
service. Thus she can submit a delegation credential

deleg(Alice, Scheduler,alice.dat)

to the scheduling service along with her job and a partially instantiated missing-
credential “template”

{deleg(Scheduler, node,alice.dat)}.

The service will then execute the job on some node, e.g. Node4?2, passing along
Alice’s delegation credential as well as a newly created (or cached) credential
instantiated from the template, namely deleg(Scheduler,Node42, alice.dat).
When the node eventually requests access to Alice’s file on the file server, it
submits both Alice’s and the scheduler’s delegation credentials to support the
request. Access is then guaranteed to be granted as long as the file server’s policy
has not been changed in the meantime.

5 Discussion

Related work. There has been very little research on improving the usability of
authorization systems in the case of access denial. The Know system [19] can
provide helpful feedback to the user in the form of a list of conditions under which
the policy allows access. A separate disclosure policy restricts the information
revealed by the feedback. However, the authors only consider policies of rather
limited expressiveness, namely those that can be written as propositional boolean
formulas; hence the feedback can be computed using Ordered Binary Decision
Diagrams (OBDDs).

Bonatti et al. [20] have developed a framework for explaining both positive
and negative access decisions in the context of a Datalog-based authorization
language. For explaining access denials, they essentially compute a tabled failed
proof graph (called explanation graph) for the query. Users can navigate through
the graph, which is represented in controlled natural language, to see where the
proof failed. To keep the overhead as low as possible, they do not attempt to
search for the missing facts that would complete the failed proof. We have shown
in this paper that we can compute the sets of missing facts while maintaining a
low implementation overhead.
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Koshutanski and Massacci [I8] employ abduction for interactive credential
retrieval: if the credentials presented by the user are not sufficient to allow ac-
cess, the service computes a set of missing credentials (filtered by a disclosure
policy) and returns it to the user who can either supply the required credentials
or decline, in which case the process iterates. This process terminates because
it is assumed that the set of constants that could be used as credential pa-
rameters is finite and known to the service in advance. The policy can then be
reduced to propositional (variable-free) formulas. However, we believe that this
is an unreasonable assumption, particularly in decentralized applications where
authorization is based on attributes as the identities of principals in delegation
chains are not known a priori.

Becker and Nanz [21] have developed an algorithm for analyzing authoriza-
tion policies in which facts (such as current role activations) can be added and
removed dynamically by commands (such as activating or deactivating a role).
The paper presupposes a function for computing sufficient preconditions for ex-
ecuting such commands, but does not explain how it can be implemented. The
abductive procedure presented in this paper could be used to implement the
required function.

Implementation. Prototypes of the abductive algorithm and the static termina-
tio